
GridAPPS-D
Release 2021_05.0

May 25, 2021

Installation Runtime

1 Windows 10 Installation 5
1.1 Virtual Machine & Docker Setup . 5
1.2 Installing GridAPPS-D . 7
1.3 Running GridAPPS-D . 10
1.4 Installing Python Tutorials . 10

2 Using the GridAPPS-D Viz 13

3 Docker Shortcuts 15

4 GridAPPS-D Introduction 17
4.1 1. What is GridAPPS-D? . 17
4.2 2. GridAPPS-D Platform Characteristics . 18
4.3 2.3. Replicable . 18
4.4 2.4. Flexible Distribution Simulation . 18
4.5 3. Data Representation & Management . 18
4.6 4. Real-Time Distribution Simulation . 19
4.7 5. Using the GridAPPS-D Platform . 20

5 GridAPPS-D Architecture 23
5.1 1. GridAPPS-D Architecture . 23
5.2 2. GridAPPS-D User Roles . 25
5.3 3. Integration with External Vendor Systems . 26
5.4 4. GridAPPS-D Applications . 26
5.5 5. GridAPPS-D Services . 26
5.6 6. GridAPPS-D Application Programming Interface . 27
5.7 7. GOSS Message Bus . 27
5.8 8. GridAPPS-D Core Services . 27
5.9 9. Co-Simulation Framework . 28
5.10 10. Database Structures . 28

6 GridAPPS-D Python Library 29
6.1 Getting Started . 29
6.2 1. A First Course in GridAPPSD-Python . 29
6.3 2. Building Blocks of an Application . 31

7 GridAPPS-D Application Structure 35

i

7.1 1. Application Structure . 35
7.2 2. Querying for the Power System Model . 36
7.3 3. Querying for Measurement mRIDs . 37
7.4 4. Querying for Weather Data . 38
7.5 5. Configuring a Parallel Simulation . 39
7.6 6. Processing Measurements & App Core Algorithm . 40
7.7 7. Subscribing to Simulation Output . 41
7.8 8. Publishing Equipment Commands . 42
7.9 9. Querying Historical & Timeseries Data . 44
7.10 10. Subscribing and Publishing to Logs . 44

8 GridAPPS-D Service Structure 45

9 Introduction to the Common Information Model 47
9.1 1. Introduction . 47
9.2 2. Background and Structure of the CIM . 48
9.3 3. Summary of CIM XML Classes . 50
9.4 References . 52

10 API Communication Channels 53
10.1 1. What are Channels in GridAPPS-D? . 53
10.2 2. /queue/ vs /topic/ . 53
10.3 2.1. Queue Channels . 53
10.4 2.2. Topic Channels . 54
10.5 3. Static GridAPPS-D Topics . 54
10.6 4. Dynamic GridAPPS-D Topics . 56

11 API Message Structure 61
11.1 1. Python Dictionaries VS JSON Strings . 61
11.2 2. Structure of a GridAPPS-D Message . 62
11.3 3. Parsing Returned Data . 63
11.4 4. Using the STOMP Client . 64
11.5 4.3. Submitting a Request . 66

12 Indices and tables 67

ii

GridAPPS-D, Release 2021_05.0

Installation Runtime 1

GridAPPS-D, Release 2021_05.0

2 Installation Runtime

GridAPPS-D, Release 2021_05.0

This will be on the main page here!

Installation Runtime 3

GridAPPS-D, Release 2021_05.0

4 Installation Runtime

CHAPTER 1

Windows 10 Installation

This section contains detailed installation instructions and runtime environment tips for running GridAPPS-D and its
dependencies on a Windows 10 machine.

1.1 Virtual Machine & Docker Setup

1.1.1 Table of Contents

A typical Windows 10 installation does not include several of the tools needed to run the GridAPPS-D Platform Several
software packages need to be installed prior to installing GridAPPS-D in the next step

Installation Steps:

• 1. Verify System Requirements

• 2. Verify OS Build

• 3. Install Windows Subsystem for Linux

– 3.1. Enable WSL

– 3.2. Upgrade to WSL2

– 3.3. Install Linux Ubuntu OS

– 3.4. Set up Ubuntu in WSL

• 4. Install Docker for Windows

1.1.2 1. Verify System Requirements

• OS:

– Windows 10, Version 2004 or higher, with Build 19041 or higher

• RAM:

5

GridAPPS-D, Release 2021_05.0

– 8GB (absolute minimum for 13 and 123 node models, may encounter memory overload during installation
);

– 16GB (preferred for small models, minimum for 8500/9500 node models);

– 32GB (recommended for application development)

• Disk Space:

– 15GB required for installation

Note: The download size is quite large, so it is recommended to use a fiber or ethernet interent connection, rathered
than a metered hotspot to avoid excessive data usage charges.

1.1.3 2. Verify OS Build

To check your OS build, type winver in the Cortana seach bar:

|win_setup_run_winver.png|

Check to see if your OS is

• For x64 systems: Version 1903 or higher, with Build 18362 or higher.

• For ARM64 systems: Version 2004 or higher, with Build 19041 or higher.

|win_setup_goodbad_winver.png|

If not, run Windows Update to get the latest verion of Windows 10 available for your machine. It may take some time
for the new OS to download. Multiple restarts are typical while upgrading the windows version.

1.1.4 3. Install Windows Subsystem for Linux

GridAPPS-D and the associated docker containers will run using the Windows Subsystem for Linux (WSL), which is
a new feature to Windows 10 that enables linux code to run natively in Windows without a separate virtual machine.
The steps in this section are also available on the Microsoft website

3.1. Enable WSL

Open Windows PowerShell as an administrator:

|win_setup_open_powershell.png|

Enable WSL by entering

dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux
/all /norestart

|win_setup_enable_wsl2.png|

Then, without restarting, enable the virtual machine platform by entering

dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /
norestart

|win_setup_enable_VM.png|

When completed, restart your machine. It may take a few minutes for the new settings to be applied while restarting.

6 Chapter 1. Windows 10 Installation

https://docs.microsoft.com/en-us/windows/wsl/install-win10

GridAPPS-D, Release 2021_05.0

3.2. Upgrade to WSL2

Download the latest WSL2 package .msi installer from the Microsoft repository

Run the update package to install WSL2 using the wizard:

|win_setup_WSL_wizard.png|

Open Windows PowerShell again and update the settings to use WSL2 by entering

wsl --set-default-version 2

3.3. Install Linux Ubuntu OS

Open the Microsoft Store app, and search for Ubuntu and install the desired version (available versions are 16.04,
18.04, and 20.04)

|win_setup_ubuntu_store.png|

When it has finished downloading, click Launch.

|win_setup_ubuntu_launch.png|

3.4. Set up Ubuntu in WSL

Wait for the Ubuntu OS to install.

|win_setup_ubuntu_setup.png|

Select a username and password. These do not need to be the same as your Windows or Microsoft Account login.

|win_setup_ubuntu_username2.png|

1.1.5 4. Install Docker for Windows

Download and run Docker Desktop for Windows from Docker Hub

Be sure to select “Install required components for WSL2”

|win_setup_docker_wizard.png|

After restarting your machine, Docker should start automatically, and you will see a notification stating “Linux WSL2
containers are starting”

|win_setup_containers_starting.png|

1.2 Installing GridAPPS-D

1.2.1 1. Clone the GridAPPS-D Docker repository

Disconnect from your corporate/laboratory VPN (if applicable) and open the Ubuntu terminal:

|win_setup_open_ubuntu.png|

1.2. Installing GridAPPS-D 7

https://wslstorestorage.blob.core.windows.net/wslblob/wsl_update_x64.msi
https://desktop.docker.com/win/stable/Docker%20Desktop%20Installer.exe

GridAPPS-D, Release 2021_05.0

Clone the GridAPPS-D repository:

git clone https://github.com/GRIDAPPSD/gridappsd-docker

|win_setup_clone_gapps.png|

1.2.2 2. Install the GridAPPS-D Docker Containers

Change directories into the gridappsd-docker folder and start the latest stable release of the GridAPPS-D platform.

• cd gridappsd-docker

• ./run.sh

It is possible to specify a particular release tag using the -t option and the release tag

• ./run.sh -t develop - use the develop branch with latest beta features

• ./run.sh -t releases_2021.03.0 - use the March 2021 release

• ./run.sh -t releases_2020.09.0 - use the September 2020 release

A complete set of release is available in the associated readthedocs page

|win_setup_gapps_run.sh.png|

Wait for the platform to download the required docker containers. This is a very large package and will take several
minutes.

|win_setup_pulling_containers.png|

After the containers have finished downloading, they will automatically be created and then launched:

|win_setup_containters_pulled.png|

1.2.3 3. Launch the GridAPPS-D Platform

When all the containers are running, the terminal will move inside the docker enviroment, which has its own internal
directories and path.

Start the GridAPPS-D platform inside the docker container by running

./run-gridappsd.sh

|win_setup_start_platform.png|

The GridAPPS-D platform is now installed and running.

To confirm, open localhost:8080 to access the GridAPPS-D Visualization App:

8 Chapter 1. Windows 10 Installation

https://gridappsd.readthedocs.io/en/latest/overview/index.html#release-history
http://localhost:8080/

GridAPPS-D, Release 2021_05.0

*Congratulations! You have successfully installed the GridAPPS-D Platform, and the GridAPPSD-Python
development environment!*

1.2. Installing GridAPPS-D 9

GridAPPS-D, Release 2021_05.0

1.3 Running GridAPPS-D

1.3.1 1. Starting the Platform

If you are accessing this module after completing the installation steps in the previous procedure, then the GridAPPS-D
Platform is already running.

When you start your machine next time, you will need to start the GridAPPS-D Platform again. To do this, change
directories into gridappsd-docker and run the ./run.sh script

• cd gridappsd-docker

• ./run.sh or ./run.sh -t release_tag

1.3.2 2. Stopping the Platform

1.3.3 3. Restarting the Platform

1.3.4 4. Pulling Updated Containers

1.4 Installing Python Tutorials

1.4.1 1. Install Git for Windows

Install git for windows. This package is required to download and run the python notebooks.

Open gitforwindows.org and download the latest version.

Use the installation wizard with the recommended settings to complete installation.

|win_setup_install_git.png|

[Return to Top]

1.4.2 2. Install Anaconda or Miniconda

Download the latest version of the Miniconda from the Conda.io website:

• Python 3.8 for 64-bit Windows

• Python 3.8 for 32-bit Windows

Use the installation wizard with the recommended settings to complete installation.

|win_setup_miniconda.png|

After installation is complete, launch the Anaconda Prompt (Miniconda3) from the Start Menu or by typing
anaconda in the Cortana toolbar

|win_setup_launch_miniconda.png|

The miniconda terminal window will open

|win_setup_miniconda_terminal.png|

[Return to Top]

10 Chapter 1. Windows 10 Installation

https://gitforwindows.org/
https://docs.conda.io/en/latest/miniconda.html
https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe
https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86.exe

GridAPPS-D, Release 2021_05.0

1.4.3 3. Install Jupyter Lab

In the miniconda terminal window, run

pip install jupyterlab

to install the Jupyter environment for executing the python notebooks. It may take a couple minutes to collect and
install all the required packages.

|win_setup_install_jupyter.png|

[Return to Top]

1.4.4 4. Install GridAPPSD-Python

In the Miniconda terminal window, download and install GridAPPSD-Python by running

pip install git+https://github.com/GRIDAPPSD/gridappsd-python.
git@develop#egg=gridappsd

to download the GridAPPSD-Python library and required packages.

|win_setup_install_gapps_python.png|

GridAPPSD-Python and all dependencies should have been automatically added to your anaconda path after comple-
tion.

[Return to Top]

1.4.5 5. Download Python Training Notebooks

In the miniconda terminal window, clone the python notebooks by running git clone https://github.com/
GRIDAPPSD/gridappsd-hackathon to download the python training notebooks.

|win_setup_install_notebooks.png|

By default, the notebooks will be saved in the directory C:\Users\username\gridappsd-hackathon

Close the miniconda terminal

[]:

If running on a remote server (e.g. AWS cloud or university / laboratory server farm), start the notebooks by running

jupyter notebook --port 8890 --no-browser --ip='0.0.0.0'

[]:

1.4. Installing Python Tutorials 11

GridAPPS-D, Release 2021_05.0

12 Chapter 1. Windows 10 Installation

CHAPTER 2

Using the GridAPPS-D Viz

13

GridAPPS-D, Release 2021_05.0

14 Chapter 2. Using the GridAPPS-D Viz

CHAPTER 3

Docker Shortcuts

15

GridAPPS-D, Release 2021_05.0

16 Chapter 3. Docker Shortcuts

CHAPTER 4

GridAPPS-D Introduction

4.1 1. What is GridAPPS-D?

GridAPPS-D™ is an open-source platform that accelerates development and deployment of portable applications for
advanced distribution management and operations. It is built in a linux environment using Docker, which allows large
software packages to be distributed as containers. Docker tools will be discussed in Lesson

The GridAPPS-D™ project is sponsored by the U.S. DOE’s Office of Electricity, Advanced Grid Research. Its purpose
is to reduce the time and cost to integrate advanced functionality into distribution operations, to create a more reliable
and resilient grid.

GridAPPS-D enables standardization of data models, programming interfaces, and the data exchange interfaces for:

• devices in the field

• distributed apps in the systems

• applications in the control room

The platform provides

• robust testing tools for applications

• distribution system simulation capabilities

• standardized research capability

• reference architecture for the industry

• application development kit

17

GridAPPS-D, Release 2021_05.0

4.2 2. GridAPPS-D Platform Characteristics

4.2.1 2.1. Vendor / Vendor Platform Independent

The GridAPPS-D Platform and application development environment is independent of any specific vendor or vendor
platform, in other words vendor neutral. The results of this effort are intended to be useful and available to any vendor
or application developer who wishes to apply them or incorporate them into existing or future products.

4.2.2 2.2. Standards-based Architecture

GridAPPS-D is the first platform for energy and distribution management systems that is designed with standards for
data integration, including data models, programming interfaces, and data exchange interfaces between grid devices
in the field, distributed applications in utility systems, and applications in utility control rooms. This means that the
applications developed using GridAPPS-D make them broadly applicable and interchangeable across utility systems,
reducing the cost and time for utilities to integrate new functionality.

To the greatest extent possible, the GridAPPS-D Platform incorporates and supports industry standards, in particular
interoperability standards, including the power system model representation using the Common Information Model
(CIM) and communications with other platforms / physical equipment through DNP3, IEEE 2030.5, and the open field
messaging bus (OpenFMB)

4.3 2.3. Replicable

As a reference implementation of a standards-based architecture, advanced applications and services developed with
GridAPPS-D Platform should be replicable, with the ability to be deployed at multiple locations on different distribu-
tion feeders with almost no code customization.

4.4 2.4. Flexible Distribution Simulation

The GridAPPS-D Platform enables users to run real-time quasi-static simulations of large distribution network models
with real-time load data, thermal co-simulation of houses, real-time weather data, and real-time operation of switches,
DERs, and volt-var control equipment. The platform supports multiple distribution simulators through a co-simulation
bridge that abstracts the simulation configuration details to a simple API.

4.5 3. Data Representation & Management

A key to GridAPPS-D is providing the distribution system application developer with a standardized approach to data.
The intent is to allow the developer to make logical references to data referencing standard data models and interfaces
without concern for how the data is physically made available. This standardized, logical data interface is based on
existing standards to the greatest extent possible.

18 Chapter 4. GridAPPS-D Introduction

GridAPPS-D, Release 2021_05.0

4.5.1 3.1. Standards-based Data Representation

The Common Information Model (CIM) is used for all power system models, which enables rapid exchange of power
system models across compliant applications and services. Using the set of standardized model queries provided by
the PowerGrid Models API, a GridAPPS-D application is able to scale seamlessly across different network models
with no modifications to the application code.

4.5.2 3.2. Standards-based Data Interfaces

The GridAPPS-D Platform and GridAPPS-D APIs provide a standardized method for interfacing with power system
model data, real-time simulation data, historical data, and log data. Each of these APIs abstract the database specifics,
and enable simple queries through a set of standardized messages formatted as JSON strings.

4.5.3 3.3. Data Translation to Non-standardized Elements

CIM Hub and the Configuration File API allow conversion of the power system model data from the standards-based
CIM XML format used by the GridAPPS-D Platform to model formats used by other software packages, such as
GridLAB-D and OpenDSS. This model conversion process can be performed with a simple set of standardized API
calls.

4.5.4 3.4. Available Distribution Feeders

The GridAPPS-D platform comes pre-configured with a combination of IEEE Test Feeders, PNNL Taxanomoy feed-
ers, and other realistic synthetic models. Additional models and actual utility feeder data can be uploaded easily as
CIM XML files into the GridAPPS-D Platform, which can then be used for application testing and real-time simula-
tion.

4.6 4. Real-Time Distribution Simulation

The GridAPPS-D Platform inlcudes a robust real-time distribution simulator with comparable capabilities to a Dis-
patcher Training Simulator. This environment enables application developers to test algorithms and application code
on both the standard realistic sythetic feeders pre-configured in the GridAPPS-D Platform download and any other
power system models that the user can upload through the CIM Hub package.

The distribution simulator is the source of data to the distribution system application developer enabling them to eval-
uate the performance of their application with ideal or realistic noisy data under different operating and performance
conditions.

The GridAPPS-D platform currently supports only quasi-static simulation (i.e. simulation of electromechanical / elec-
tromagnetic transients, variable microgrid island frequency, synchro-check relays, etc. are not supported currently).
These types of simulations can be performed with GridLAB-D outside of the the GridAPPS-D Platform and applica-
tion development environment.

4.6.1 4.1. Real-Time & Faster-than-Real-Time Simulation

Simulations can be run in two modes:

4.6. 4. Real-Time Distribution Simulation 19

GridAPPS-D, Release 2021_05.0

1) Real-time mode: one second of computer clock time corresponds to one second of simulation time. The
GridAPPS-D Platform runs the simulation in each time and publishes simulation data and sensor measurements
every three seconds.

2) Faster-than-real-time mode: The GridAPPS-D runs the simulation as fast as possible and does not wait for three
seconds of computer clock time to pass before it publishes the simulation data from the current time step. This
mode is very useful for creating historical training data sets for AI/ML applications.

4.6.2 4.2. Controllable Power System Equipment

All of the power system equipment can be controlled in real-time through the Simulation API, allowing applications
to open/close switches, dispatch DGs / DERs, adjust setpoints of rooftop PV, adjust regulator taps, and turn capacitor
banks on or off.

4.6.3 4.3. Noisy / Bad Data Injection & Communication Failures

The GridAPPS-D Platform supports the Sensor Simulator Service, which is able to inject noise, bad measurements,
and data packet losses into the simulation output. The frequency at which sensors publish can also be adjusted and
aggregated, allowing realistic representation of real sensors, such as AMI meters that publish data every 15 minutes,
rather than at each simulation time step. This allows the user to train and evaluate applications with realistic measure-
ment for meters and sensors, rather than “pure” data created by the power flow solver.

The GridAPPS-D Platform also supports simulation of communication failures through the Test Manager during which
data is not received from sensors, control commands are delivered to selected equipment, or both. This enables
application developers to test algorithm performance under realistic conditions, during which physical equipment
might not respond to control commands.

4.6.4 4.4. Reconfigurable Power System Topologies

The GridAPPS-D Platform supports simulation of both meshed and radial power system topologies, as well as re-
configuration of the power system network in real-time by opening / closing / tripping of various switching devices,
such as breakers, reclosers, sectionalizers, and fuses. These switches can be controlled by an application through the
Simulation API or through the GridAPPS-D Viz GUI

4.6.5 4.5. Real-Time Simulation Visualization

The GridAPPS-D Platform includes the Viz GUI application, which presents a simple graphic user interfaces with
some of the basic functionalities found in an Dispatcher Training Simulator, inlcuding a one-line diagram of the
feeder, colorized switch positions, outage locations, alarm messages, and customizable stripcharts of power flow, node
voltage, and tap position.

4.7 5. Using the GridAPPS-D Platform

GridAPPS-D currently runs in a Linux virtual machine (VM). Although it can be built from sources, the primary form
of distribution is as a set of Docker containers. Users can install the Docker infrastructure on their computer and then
download the Docker containers. Several platform usage scenarios are then feasible:

20 Chapter 4. GridAPPS-D Introduction

GridAPPS-D, Release 2021_05.0

1. Start and run the application through its browser interface. Utilities could use the platform this way to evaluate
new applications, or to evaluate applications on their own circuits. The App Hosting Manager allows a user to
install and configure new applications to run in the platform, by modifying configuration files but without having
to write new code. GridAPPS-D will also be able to ingest any distribution circuit provided in CIM format.

2. Write scripted scenarios and responses using the Test Manager, and run those through GridAPPS-D. This mode
can be used for a more rigorous evaluation, and also for operator training.

3. Write a new application, using one of the open-source examples as a template. This mode should provide a
faster on-ramp for application developers to develop a standards-compliant product.

4. DMS vendors can use the platform to develop and test their own standards-compliant interfaces. Any GridAPPS-
D code may be incorporated into a commercial product, pursuant to its BSD license terms. The goal is for an
application to be deployable from one platform to another, simply by moving the program file(s) and updating
local configuration files.

4.7. 5. Using the GridAPPS-D Platform 21

GridAPPS-D, Release 2021_05.0

22 Chapter 4. GridAPPS-D Introduction

CHAPTER 5

GridAPPS-D Architecture

5.1 1. GridAPPS-D Architecture

GridAPPS-D offers a standards-based, open-source platform that enables rapid integration of advanced applications
and services through a robust application programming interface (API).

The architecture of the development ecosystem is illustrated below.

23

GridAPPS-D, Release 2021_05.0

24 Chapter 5. GridAPPS-D Architecture

GridAPPS-D, Release 2021_05.0

5.2 2. GridAPPS-D User Roles

The GridAPPS-D platform contains several user roles with different permissions.

[[GET DESCRIPTION OF USER ROLES AND PERMISSION FROM TARA]]

• System

– This role is used by XXX to do XXX

– Permission inlcude

*

*

*

• Evaluator

– This role is used by XXX to do XXX

– Permission inlcude

*

*

*

• Operator

– This role is used by XXX to do

– Permission inlcude

*

*

*

• Test Manager

– This role is used by XXX to do

– Permission inlcude

*

*

*

5.2. 2. GridAPPS-D User Roles 25

GridAPPS-D, Release 2021_05.0

5.3 3. Integration with External Vendor Systems

External vendor systems are able to interface with GridAPPS-D compliant applications and services through two
means.

The first is direct integration through the standards-based API and message bus. This enables products that comply
with the GridAPPS-D™ platform to * reduce utility time and cost to integrate new functionality * give utilities more
choice in technology providers * scale up or down for any size utility * expand market opportunities for developers
and vendors

The second method is through the standards-based services, such as the DNP3 service, IEEE 2030.5 service, etc. that
enable communication between GridAPPS-D compliant applications and external vendor systems through SCADA
and other control center protocols.

5.4 4. GridAPPS-D Applications

The GridAPPS-D platform and API enable rapid development of advanced power applications that are able to operate
in a real-time environment and interface with external software and systems. Multiple power applications have already
been developed on the platform, including

• Volt-Var Optimization (VVO)

• Fault Location Isolation and Service Restoration (FLISR)

• Distributed Energy Resource Dispatch and Management (DERMS)

• Solar Forecasting, Load Forecasting, etc.

• and more

Applications can be containerized in Docker for direct integration into the platform or interface through the API.
Applications can be written in any programming language, but API libraries are currently available in only Python and
Java.

5.5 5. GridAPPS-D Services

The GridAPPS-D platform can host a multitude of services for processing both real-time simulation and control center
data. These services can be called by any application through the GridAPPS-D API.

Some of the available services include

• State Estimator

• Sensor Simulator

• Alarm Service

• DNP3 Protocol Service

• IEEE 2030.5 Protocol Service

26 Chapter 5. GridAPPS-D Architecture

GridAPPS-D, Release 2021_05.0

5.6 6. GridAPPS-D Application Programming Interface

GridAPPS-D offers a unique standards-based application programming interface (API) that will be the focus of the
lessons in this set of tutorials. The API enables any application, service, or external vendor product to interface with
each other, access control center data, run a real-time simulation, and issue equipment control commands.

GridAPPS-D has several APIs to serve different needs and objectives, inlcuding * Powergrid Models API – Allows
apps and services to access the power system model data * Configuration File API – Allows apps to set equipment
statuses and system conditions * Simulation API – Allows apps to start a real-time simulation and issue equipment
commands * Timeseries API – Allows apps to pull real-time and historical data * Logging API – Allows apps to
access logs and publish log messages

Additional APIs are currently under development to enable communication and control of field devices, as well as
cyber-physical network co-simulation.

5.7 7. GOSS Message Bus

One of the unique features of GridAPPS-D is the GOSS Message Bus, which enables integration and communication
between applications, services, and external software on a publish-subscribe basis.

The GridAPPS-D platform publishes SCADA and simulation data, alarms, and other real-time data. Applications
subscribe to the types of messages relevant to their objectives and publish equipment commands and control settings.

5.8 8. GridAPPS-D Core Services

“Under the hood” of the GridAPPS-D platform are the core services and managers.

An application developer should not need a detailed understanding of the core services, as all interaction is performed
through the various APIs, which will be dicussed in detail in the upcoming tutorial lessons.

The core services provide the key functionality offered by the GridAPPS-D platform, inlcuding database access,
processing API calls, handling equipment commands, and running simulations.

Some of the core services included in the GridAPPS-D platform are * Platform Manager – Coordinates all of the
other managers * Process Manager – Coordinates platform component interactions * Application Manager – Man-
ages application registration, execution, and status reporting * Configuration Manager – Manages the setup and
configuration of real-time simulations * Simulation Manager – Allows users and apps to create, start, stop, and pause
co-simulations * Data Manager – Coordinates the integrated repository of model, timeseries data, and metadata *
Model Manager – Loads and checks CIM-based power system models * Logging Manager – Supports logging for
application development and execution * Services Manager – Coordinates all services available for users and apps *
Test Manager – Enables creation of simulation events, faults, and network outages

5.6. 6. GridAPPS-D Application Programming Interface 27

GridAPPS-D, Release 2021_05.0

5.9 9. Co-Simulation Framework

The co-simulation framework serves as the simulation context for the rest of GridAPPS-D. When a simulation is
requested through the GridAPPS-D plaform the simulation manager instantiates a FNCS or HELICS co-simulation
federation consisting of two applications. The first application is a powerflow simulator which can be either GridLAB-
D or OpenDSS that simulates real world distribution feeder or feeders. The second is a custom application that serves
as bridge between the FNCS/HELICS message bus and the GOSS message bus. The data that travels between the co-
simulation federation and the rest of the platform are SCADA measurement, SCADA control, and simulation status
and control messages.The bridge application subscribes to the simulation input topic to recieve any SCADA control,
simulation control, and simulation event messages. The bridge forwards SCADA control commands and simulation
events like faults and outages to the powerflow simulator. The bridge publishes SCADA measurements from the
powerflow simulator on a simulation output topic that GridAPPS-D applications and other parts of the GridAPPS-D
platform subscribe to.

5.10 10. Database Structures

Default installation of GridAPPS-D comes with following data stores:

• MySQL: It is used to store log data from platform, applications and services. For details, please see Logging
API, which is covered in detail in Lesson 2.7.

• Blazegraph: It is used to store power grid model data. The data contains equipments, properties and their initial
measurement values. It is a triplestore that supports complex graph representation and class structure for CIM
standard data model.

• InfluxDB: InfluxDB is a time series data store and is used to store simulation output, simulation input, weather
and load data. It also store output from services line sensor service and alarms service. For the purposes
of the GridAPPS-D project, InfluxDB is managed by Proven. Proven is a database software suite supporting
disclosure, collection, and management of modeling and simulation data.

For the purpose of developing applications, the data stores used should be transparent to the application as long the
data model and standardized API is used.

Return to Top

28 Chapter 5. GridAPPS-D Architecture

CHAPTER 6

GridAPPS-D Python Library

6.1 Getting Started

Before running any of the sample routines in this tutorial, it is first necessary to start the GridAPPS-D Platform and
establish a connection to this notebook so that we can start passing calls to the API.

Open the Ubuntu terminal and start the GridAPPS-D Platform if it is not running already:

cd gridappsd-docker

~/gridappsd-docker$./run.sh -t develop

Once containers are running,

gridappsd@[container]:/gridappsd$./run-gridappsd.sh

6.2 1. A First Course in GridAPPSD-Python

GridAPPSD-Python is a Python library that can wrap API calls and pass them to the various GridAPPS-D APIs
through the GOSS Message Bus

The library has numerous shortcuts to help you develop applications faster and interface them with other applications,
services, and GridAPPS-D compatible software packages.

29

GridAPPS-D, Release 2021_05.0

Return to Top

30 Chapter 6. GridAPPS-D Python Library

GridAPPS-D, Release 2021_05.0

6.3 2. Building Blocks of an Application

This section is going to provide an overview of some of the key building blocks of a GridAPPS-D application.

6.3.1 2.1. Import Required Python Libraries

The first step is to import the required libraries.

Below is a list of some of the additional libraries that you may need to import.

You may not need all of these additional libraries, depending on the needs of your application

• argparse – This is the recommended command-line parsing module in Python.(Online Documentation)

• json – Encoder and decoder for JavaScript Object Notation (JSON). (Online Documentation)

• logging – This module defines classes and functions for event logging. (Online Documentation

• sys – Python module for system specific parameters. (Online Documentation)

• time – Time access and conversions. (Online Documentation)

• pytz – Library to enable resolution of cross-platform time zones and ambiguous times. (Online Documentation

• stomp – Python client for accessing messaging servers using the Simple Text Oriented Messaging Protocol
(STOMP). (Online Documentation)

[]: import argparse
import json
import logging
import sys
import time
import pytz
import stomp

Return to Top

6.3.2 2.2. Import Required GridAPPS-D Libraries

The GridAPPS-Python API contains several libraries, which are used to query for information, subscribe to measure-
ments, and publish commands to the GOSS message bus. These inlcude

GridAPPSD – This is primary library that contains numerous methods and tools that will be dicussed in detail in the
subsequent lessons.

utils – A set of utilities to assist with common commands, inlcuding

Function Call |

Usage ————–|———–

utils.validate_gridappsd_uri() |

Checks if GridAPPS-D is hosted on the correct port

utils.get_gridappsd_address() |

Returns the platform address such that response can be passed directly to a socket or the STOMP library

utils.get_gridappsd_user() |

6.3. 2. Building Blocks of an Application 31

https://docs.python.org/3/howto/argparse.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/sys.html
https://docs.python.org/3/library/time.html
https://pypi.org/project/pytz/
https://pypi.org/project/stomp.py/

GridAPPS-D, Release 2021_05.0

Returns the login username

utils.get_gridappsd_pass() |

Returns the login password

utils.get_gridappsd_application_id() |

Only applicable if the environment variable ‘GRIDAPPSD_APPLICATION_ID’ has been set

utils.get_gridappsd_simulation_id()_ |

retrieves the simulation id from the environment.

[]: from gridappsd import GridAPPSD, utils

6.3.3 2.3. Establish a Connection to the GridAPPS-D Platform

The next step is to establish a connection with the GridAPPS-D platform so that API calls can be passed and processed.

This can be done by 1) manually specifying the connection and port or 2) using the GridAPPS-D utils to automatically
determine the port

Option 1: Manually specify connection parameters

By default, the GridAPPS-D API communicates with the platform on port 61613.

[]: gapps = GridAPPSD("('localhost', 61613)", username='system', password='manager')

Option 2: Use GridAPPS-D utils to determine connection

The GridAPPS-D utils include several functions to automatically determine the location of the platform and security
credentials for passing API commands

[]: gapps = GridAPPSD(address=utils.get_gridappsd_address(),
username=utils.get_gridappsd_user(), password=utils.get_gridappsd_pass())

Return to Top

6.3.4 2.4. Pass a Simple API Call

There are three generic API call routines:

• send(self, topic, message) –

• get_response(self, topic, message) –

• subscribe(self, topic, callback) –

32 Chapter 6. GridAPPS-D Python Library

GridAPPS-D, Release 2021_05.0

For this example, we will use a very short query to request the MRIDs of the models available in the GridAPPS-D
Platform. We will explain how to make various kinds of queries in the upcoming lessons on how to use each API.

The first step is to define the topic, which specifies the channel on which to communicate with the API. The concept
of the GridAPPS-D Topic will be introduced in the next lesson. The specific topic definitions and their purposes will
be discussed in greater detail in the lessons on each GridAPPS-D API.

[]: topic = "goss.gridappsd.process.request.data.powergridmodel"

Next, we need to create the message the will be passed. The message must be a valid Python Dictionary or JSON-
formated string. The way a message is created, structured, formatted, and parsed is discussed in detail in

If it is a short query, we can write it as a single line.

[]: message = {"requestType": "QUERY_MODEL_NAMES", "resultFormat": "JSON"}

If it is a long query, we can break up the lines of the python dictionary object to improve readability:

message = { "key1": "value1", "key2": "value2" }

[]: message = {
"requestType": "QUERY_MODEL_NAMES",
"resultFormat": "JSON"

}

The GridAPPSD-Python Library then wraps that string and passes it as a message to the API through the GOSS
Message Bus.

[]: gapps.get_response(topic, message)

Return to Top

6.3. 2. Building Blocks of an Application 33

GridAPPS-D, Release 2021_05.0

34 Chapter 6. GridAPPS-D Python Library

CHAPTER 7

GridAPPS-D Application Structure

7.1 1. Application Structure

2) Start a simulation in the GridAPPS-D Viz:

The Simulation API calls covered in this lesson need to be passed to an active simulation. For the purposes of this
tutorial, we will use the GridAPPS-D Viz at localhost:8080 to start a simulation of the IEEE 123 Node model with a
3600 sec simulation time.

The steps for starting a simulation were covered in Lesson 2.5, Section 3.

After starting the simulation, paste the simulation_id into the code block below by clicking on the simulation_id. This
will automatically copy the simulation_id to your computer’s clipboard.

When your application is containerized in Docker and registered with the GridAPPS-D Platform using the docker-
compose file, the simulation_id and feeder model mRID as passed as part of the application start call. For this
notebook, that information needs to be copied and pasted into the first code block below.

[]: # Import GridAPPSD-Python Library:
from gridappsd import GridAPPSD

(continues on next page)

35

http://localhost:8080/
Lesson%202.5.%20Simulation%20API%20-%20Running%20Simulations.ipynb#3.2.1.-%22power_system_config%22:

GridAPPS-D, Release 2021_05.0

(continued from previous page)

Paste Simulation ID into this variable:
viz_simulation_id = "1788908680"

Simulation running on IEEE 123 node model:
model_mrid = "_C1C3E687-6FFD-C753-582B-632A27E28507"

Establish connection to GridAPPS-D Platform:
gapps = GridAPPSD(viz_simulation_id, "('localhost', 61613)", username='system',
→˓password='manager')
assert gapps.connected

7.2 2. Querying for the Power System Model

The first portion of a GridAPPS-D application is series of queries to the PowerGrid Models API to obtain information
about the power system model.

Because GridAPPS-D applications are designed to be portable across numerous power system models without any
code modification, the application must query the Blazegraph database and create a set of local variables that contain
the information needed by the app to run its internal code.

An application will query for the various pieces of power system equipment relevant to its objective (e.g. a VVO
app will be interested in regulators and capacitors, while a FLISR app will be interested in switches and reclosers
present in the model). The query will typically include requests for information about the names, location, mRIDS,
and electrical parameters for the various pieces of equipment needed by the application..

7.2.1 2.1. Information flow

The figure below shows the information flow involved in making a query for the power system model.

The query is sent using gapps.get_response(topic, message) on a queue channel (explained in Lesson
3.1) with a response expected back from the platform within the specified timeout period.

|01_query_model.png|

Application passes query to GridAPPS-D Platform

First, the application creates a query message for requesting information about the desired power system components
in the format of a JSON string or equivalant Python dictionary object. The syntax of this message is explained in detail
in Lesson 3.3.

The application then passes the query through the PowerGrid Models API to the GridAPPS-D Platform, which pub-
lishes it to a queue channel on the GOSS Message Bus. If the app is authenticated and authorized to pass queries, the
query message is delivered to the data managers, which obtain the desired information from the Blazegraph Database.

GridAPPS-D Platform responds to Application query

The data managers then publish the response from the Blazegraph Database to the appropriate queue channel. The
PowerGrid Models API then returns the desired information back to the application as a JSON message or equivalant
Python dictionary object.

7.2.2 2.2. Sample App code

Below is a sample query of how the application will use the PowerGrid Models API to query for the details associated
for all the switches in the feeder.

36 Chapter 7. GridAPPS-D Application Structure

3.1%20--%20Lesson%203.1%20--%20API%20Communication%20Channels.ipynb
3.1%20--%20Lesson%203.1%20--%20API%20Communication%20Channels.ipynb
3.3%20--%20Lesson%203.3%20--%20Using%20the%20PowerGrid%20Models%20API.ipynb

GridAPPS-D, Release 2021_05.0

[]: from gridappsd import topics as t

message = {
"modelId": model_mrid,
"requestType": "QUERY_OBJECT_DICT",
"resultFormat": "JSON",
"objectType": "LoadBreakSwitch"

}

response_obj = gapps.get_response(t.REQUEST_POWERGRID_DATA, message)
switch_dict = response_obj["data"]

Filter to get mRID for switch SW2:
for index in switch_dict:

if index["IdentifiedObject.name"] == 'sw2':
sw_mrid = index["IdentifiedObject.mRID"]

print(switch_dict[0]) # Print dictionary for first switch

print('mRID of sw2 is ',sw_mrid)

7.3 3. Querying for Measurement mRIDs

The next portion of a GridAPPS-D application is series of queries to the PowerGrid Models API to obtain information
about the measurements associated with various pieces of equipment the application is interested in. Due to structure
of the Common Information Model (introduced in Lesson 2.6), there exist a separate set of objects associated with
the positive-neutral-voltage (PNV), volt-ampere (VA), and position measurements (POS) for each line, transformer,
switch, etc.

Because GridAPPS-D applications are designed to be portable across numerous power system models without any
code modification, the application must query the Blazegraph Database and create a set of local variables that contain
the unique mRIDS of each measurement needed by the app to run its internal code. In a subsequent step, the app will
use these measurement mRIDs to subscribe to the live streaming data issued by the simulation.

7.3.1 3.1. Information Flow

The figure below shows the information flow involved in making a query for the power system model.

The query is sent using gapps.get_response(topic, message) on a queue channel (explained in Lesson
3.1) with a response expected back from the platform within the specified timeout period.

|02_query_model_mrids.png|

The figure below shows the information flow involved in making a query for the power system model.

Application passes query to GridAPPS-D Platform

First, the application creates a query message for requesting information about the desired power system components
in the format of a JSON string or equivalant Python dictionary object. The syntax of this message is explained in detail
in Lesson 3.3.

The application then passes the query through the PowerGrid Models API to the GridAPPS-D Platform, which pub-
lishes it to a queue channel on the GOSS Message Bus. If the app is authenticated and authorized to pass queries, the
query message is delivered to the data managers, which obtain the desired information from the Blazegraph Database.

7.3. 3. Querying for Measurement mRIDs 37

2.6%20--%20Lesson%202.6%20--%20Common%20Information%20Model.ipynb
3.1%20--%20Lesson%203.1%20--%20API%20Communication%20Channels.ipynb
3.1%20--%20Lesson%203.1%20--%20API%20Communication%20Channels.ipynb
3.3%20--%20Lesson%203.3%20--%20Using%20the%20PowerGrid%20Models%20API.ipynb

GridAPPS-D, Release 2021_05.0

GridAPPS-D Platform responds to Application query

The data managers then publish the response from the Blazegraph Database to the appropriate queue channel. The
PowerGrid Models API then returns the desired information back to the application as a JSON message or equivalant
Python dictionary object.

Below is a sample query of how the application will use the PowerGrid Models API to query for the measurement
mRIDs of all switches in the power system model

[]: message = {
"modelId": model_mrid,
"requestType": "QUERY_OBJECT_MEASUREMENTS",
"resultFormat": "JSON",
"objectType": "LoadBreakSwitch"

}

response_obj = gapps.get_response(t.REQUEST_POWERGRID_DATA, message) # Pass query to
→˓PowerGrid Models API
measurements_obj = response_obj["data"]

global Pos_obj # Define global python dictionary of position measurements
Pos_obj = [k for k in measurements_obj if k['type'] == 'Pos'] # Filter measurements
→˓to just switch positions

print(Pos_obj[0]) # Print switch position measurement mRID for first switch

7.4 4. Querying for Weather Data

The next portion of a GridAPPS-D application is series of queries to the Timeseries API to obtain information about
the weather data for the current time, including irradiation, temperature, etc. This information can be used for solar
forecasting, load forecasting, etc.

Because GridAPPS-D applications are designed to be portable across numerous power system models without any
code modification, the application must query the Timeseries Influx Database and create a set of local variables that
contain the weather data needed by the app to run its internal code.

7.4.1 4.1. Information Flow

The figure below shows the information flow involved in making a query for the power system model.

The query is sent using gapps.get_response(topic, message) on the Timeseries queue channel (ex-
plained in Lesson 3.1) with a response expected back from the platform within the specified timeout period.

|03_query_weather.png|

Application passes query to GridAPPS-D Platform

First, the application creates a query message for requesting information about the desired power system components
in the format of a JSON string or equivalant Python dictionary object. The syntax of this message is explained in detail
in Lesson 3.7.

The application then passes the query through the Timeseries API to the GridAPPS-D Platform, which publishes it
to a queue channel on the GOSS Message Bus. If the app is authenticated and authorized to pass queries, the query
message is delivered to the Data Managers, which obtain the desired information from the Timeseries Influx Database.

GridAPPS-D Platform responds to Application query

38 Chapter 7. GridAPPS-D Application Structure

3.1%20--%20Lesson%203.1%20--%20API%20Communication%20Channels.ipynb
3.7%20--%20Lesson%203.7%20--%20Using%20the%20Timeseries%20API.ipynb

GridAPPS-D, Release 2021_05.0

The Data Managers then publish the response from the Timeseries Influx Database to the appropriate queue channel.
The Timeseries API then returns the desired information back to the application as a JSON message or equivalant
Python dictionary object.

7.4.2 4.2. Sample App Code

Below is a sample query to the Timeseries API requesting all weather data between a certain startTime and endTime
(given in unix absolute time). The application can then use that weather data to feed its internal forecasting algorithm.

[]: # Use queryFilter of "startTime" and "endTime"
message = {

"queryMeasurement":"weather",
"queryFilter":{"startTime":"1357048800000000",

"endTime":"1357048860000000"},
"responseFormat":"JSON"

}

response_obj = gapps.get_response(t.TIMESERIES, message) # Pass query to Timeseries
→˓API
weather_obj = response_obj["data"]

print(weather_obj[1]) # Print first line of weather data

7.5 5. Configuring a Parallel Simulation

Some applications may choose to run parallel simulations (similar to a digital twin), either within the GridAPPS-D
platform or by exporting the model to OpenDSS, GridLAB-D, etc. This is accomplished through one or more queries
to the Configuration File API to create a simulation configuration file and/or exported power system model.

The simulation configuration file contains all the necessary info to create a new simulation, including the power
system model, date/time, and variations from the default basecase (i.e. re-dispatched DERs and switches that have
been opened/closed).

The exported power system model is the entire model as a set of GLM or DSS that can be saved to an external file and
then solved with a different power flow solver outside of the GridAPPS-D Platform.

7.5.1 5.1. Information Flow

The figure below shows the information flow involved in making a query for the power system model.

The query is sent using gapps.get_response(topic, message) on the Configuration File queue channel
(explained in Lesson 3.1) with a response expected back from the platform within the specified timeout period.

|04_config_sim_export.png|

Application passes query to GridAPPS-D Platform

First, the application creates a query message for requesting information about the desired power system configuration
in the format of a JSON string or equivalant Python dictionary object. The syntax of this message is explained in detail
in Lesson 3.4.

The application then passes the query through the Configuration File API to the GridAPPS-D Platform, which pub-
lishes it to a queue channel on the GOSS Message Bus. If the app is authenticated and authorized to pass queries, the
query message is delivered to the Configuration Manager.

7.5. 5. Configuring a Parallel Simulation 39

3.1%20--%20Lesson%203.1%20--%20API%20Communication%20Channels.ipynb
3.4%20--%20Lesson%203.4%20--%20Using%20the%20Configuration%20File%20API.ipynb

GridAPPS-D, Release 2021_05.0

GridAPPS-D Platform responds to Application query

The Configuration Manager obtains the CIM XML file for the desired power system model and then converts it to
the desired output format with all of the requested changes to the model. The Configuration File API then returns the
desired information back to the application as a JSON message (for Y-Bus or partial models) or export the files to the
directory specified in the

7.5.2 5.2. Sample App Code

Below is a sample query showing how an application would make a query through the Configuration File API to
change all loads to constant current loads, convert the power system model to a set of OpenDSS files, and export them
to the directory /tmp/dsssimulation.

[]: topic = "goss.gridappsd.process.request.config"

message = {
"configurationType": "DSS All",
"parameters": {

"directory": "/tmp/dsssimulation/",
"model_id": model_mrid,
"simulation_id": "12345678",
"simulation_name": "ieee13",
"simulation_start_time": "1518958800",
"simulation_duration": "60",
"simulation_broker_host": "localhost",
"simulation_broker_port": "61616",
"schedule_name": "ieeezipload",
"load_scaling_factor": "1.0",
"z_fraction": "0.0",
"i_fraction": "1.0",
"p_fraction": "0.0",
"solver_method": "NR" }

}

gapps.get_response(topic, message)

7.6 6. Processing Measurements & App Core Algorithm

The next portion of a GridAPPS-D application is the measurement processing and core algorithm section. This section
is built as either a class or function definition with prescribed arguments. Each has its advantages and disadvantages:

• The function-based approach is simpler and easier to implement. However, any parameters obtained from other
APIs or methods to be used inside the function currently need to be defined as global variables.

• The class-based approach is more complex, but also more powerful. It provides greater flexibility in creating
additional methods, arguments, etc.

7.6.1 6.1 Information Flow

This portion of the application does not communicate directly with the GridAPPS-D platform.

40 Chapter 7. GridAPPS-D Application Structure

GridAPPS-D, Release 2021_05.0

Instead, the next part of the GridAPPS-D application (Subscribing to Simulation Uuptut) delivers the simulated
SCADA measurement data to the core algorithm function / class definition. The core algorithm processes the data
to extract the desired measurements and run its optimization / control agorithm.

|05_app_core_algorithm.png|

No message from core algorithm to GridAPPS-D Platform

The core algorithm does not send any API messages to the platform

No response to core algorithm from GridAPPS-D Platform

The core algorithm receives its measurement data and other imputs from the subscription object defined next, rather
than directly from the GridAPPS-D platform.

7.6.2 6.2. Sample App Code

Below is a very simple core algorithm that determines the number of open switches in the model and prints the result
for each simulation timestep. The syntax of the function / class definition is described in detail in

[]: def demoSubscription1(header, message):
Extract time and measurement values from message
timestamp = message["message"]["timestamp"]
meas_value = message["message"]["measurements"]

meas_mrid = list(meas_value.keys()) #obtain list of all mrid from message

Filter to measurements with value of zero
open_switches = []
for index in Pos_obj:

if index["measid"] in meas_value:
mrid = index["measid"]
power = meas_value[mrid]
if power["value"] == 0:

open_switches.append(index["eqname"])

Print message to command line
print("............")
print("Number of open switches at time", timestamp, ' is ', len(set(open_

→˓switches)))

7.7 7. Subscribing to Simulation Output

The next portion of a GridAPPS-D application is series of queries to the Timeseries API to obtain information about
the weather data for the current time, including irradiation, temperature, etc. This information can be used for solar
forecasting, load forecasting, etc.

Because GridAPPS-D applications are designed to be portable across numerous power system models without any
code modification, the application must query the Timeseries Influx Database and create a set of local variables that
contain the weather data needed by the app to run its internal code.

7.7. 7. Subscribing to Simulation Output 41

GridAPPS-D, Release 2021_05.0

7.7.1 7.1. Information Flow

The figure below shows the information flow involved in subscribing to the simulation output.

The subscription request is sent using gapps.subscribe(topic, class/function object) on the spe-
cific Simulation topic channel (explained in API Communication Channels). No immediate response is expected back
from the platform. However, after the next simulation timestep, the Platform will continue to deliver a complete set of
measurements back to the application for each timestep until the end of the simulation.

|06_subscribe_to_sim.png|

Application passes subscription request to GridAPPS-D Platform

The subscription request is perfromed by passing the app core algorithm function / class definition to the gapps.
subscribe method. The application then passes the subscription request through the Simulation API to the topic
channel for the particular simulation on the GOSS Message Bus. If the application is authorized to access simulation
output, the subscription request is delivered to the Simulation Manager.

GridAPPS-D Platform delivers published simulation output to Application

Unlike the previous queries made to the various databases, the GridAPPS-D Platform does not provide any immediate
response back to the application. Instead, the Simulation Manager will start delivering measurement data back to
the application through the Simulation API at each subsequent timestep until the simulation ends or the application
unsubscribes. The measurement data is then passed to the core algorithm class / function, where it is processed and
used to run the app’s optimization / control algorithms.

7.7.2 7.2. Sample App Code

Below is an example of how an application subscribes to the GridAPPS-D simulation output using the function or
class definition created as part of the Measurement Processing / App Core

[]: from gridappsd.topics import simulation_output_topic

output_topic = simulation_output_topic(viz_simulation_id)

gapps.subscribe(output_topic, demoSubscription1)

7.8 8. Publishing Equipment Commands

The next portion of a GridAPPS-D App is publsihing equipment control commands based on the optimization results
or objectives of the app algorithm.

Depending on the preference of the developer, this portion can be a separate function definition, or included as part of
the main class definition as part of the Measurement Processing / App Core class definition described earlier.

7.8.1 8.1. Information Flow

The figure below outlines information flow involved in publishing equipment commands to the simulation input.

Unlike the various queries to the databases in the app sections earlier, equipment control commands are passed to
the GridAPPS-D API using the gapps.send(topic, message) method. No response is expected from the
GridAPPS-D platform.

42 Chapter 7. GridAPPS-D Application Structure

3.1%20--%20Lesson%203.1%20--%20API%20Communication%20Channels.ipynb

GridAPPS-D, Release 2021_05.0

If the application desires to verify that the equipment control command was received and implemented, it needs to do
so by 1) checking for changes in the associated measurements at the next timestep and/or 2) querying the Timeseries
Database for historical simulation data associated with the equipment control command.

|07_publish_commands.png|

Application sends difference message to GridAPPS-D Platform

First, the application creates a difference message containing the current and desired future control point / state of
the particular piece of power system equipment to be controlled. The difference message is a JSON string or equiv-
alant Python dictionary object. The syntax of a difference message is explained in detail in ‘Publishing Equipment
Commands <>‘__.

The application then passes the query through the Simulation API to the GridAPPS-D Platform, which publishes it on
the topic channel for the particular simulation on the GOSS Message Bus. If the app is authenticated and authorized
to control equipment, the difference message is delivered to the Simulation Manager. The Simulation Manager then
passes the command to the simulation through the Co-Simulation Bridge (either FNCS or HELICS).

No response from GridAPPS-D Platform back to Application

The GridAPPS-D Platform does not provide any response back to the application after processing the difference
message and implementing the new equipment control setpoint.

7.8.2 8.2. Sample App Code

Below is an example of an app code block

[]: import time
from gridappsd import DifferenceBuilder
from gridappsd.topics import simulation_input_topic

input_topic = simulation_input_topic(viz_simulation_id)

my_open_diff = DifferenceBuilder(viz_simulation_id)
my_open_diff.add_difference(sw_mrid, "Switch.open", 1, 0) # Open switch given by sw_
→˓mrid
open_message = my_open_diff.get_message()

my_close_diff = DifferenceBuilder(viz_simulation_id)
my_close_diff.add_difference(sw_mrid, "Switch.open", 0, 1) # Close switch given by sw_
→˓mrid
close_message = my_close_diff.get_message()

while True:
time.sleep(5)
gapps.send(input_topic, open_message)
time.sleep(5)
gapps.send(input_topic, close_message)

7.8.3 8.3. Viewing Application Results in GridAPPS-D Viz

Return to the browser tab in which the GridAPPS-D Simulation is currently running. Switch sw5 will now be opening
and closing every 5 seconds, with the downstream portion of the feeder being de-energized and reconnected with each
switch operation.

The core application algorithm will also reflect this with the printed response alternating between two and three open
switches every few timesteps.

7.8. 8. Publishing Equipment Commands 43

GridAPPS-D, Release 2021_05.0

7.9 9. Querying Historical & Timeseries Data

The next portion of a GridAPPS-D application is querying historical data from the current and/or previous simulations.

All simulation output and commands from the current and previous simulations are stored in the Timeseries Database,
and can be queried to provide AI/ML training data, verify processing of equipment commands, or

Note that Timeseries Database data is cleared when the GridAPPS-D Platform is shut down with the ./stop.sh script. It
is recommended to copy historical / training data to an external persistent directory using the docker cp command,
as given in the [Docker Shortcuts] section.

7.9.1 9.1. Information Flow

The figure below outlines the information flow involved in querying for historical and timeseries data.

The query is sent using the gapps.get_response(topic, message) method on the Timeseries queue chan-
nel with a response expected back from the GridAPPS-D platform within the specified timeout period.

|08_query_timeseries.png|

Application passes query to GridAPPS-D Platform

First, the application creates a query message for requesting information about the desired power system components
in the format of a JSON string or equivalant Python dictionary object. The syntax of this message is explained in detail
in Querying Timeseries Data.

The application then passes the query through the Timeseries API to the GridAPPS-D Platform, which publishes it
to a queue channel on the GOSS Message Bus. If the app is authenticated and authorized to pass queries, the query
message is delivered to the Data Managers, which obtain the desired information from the Timeseries Influx Database.

GridAPPS-D Platform responds to Application query

The Data Managers then publish the response from the Timeseries Influx Database to the appropriate queue channel.
The Timeseries API then returns the desired information back to the application as a JSON message or equivalant
Python dictionary object.

7.9.2 9.2. Sample App Code

[]:

7.10 10. Subscribing and Publishing to Logs

The last portion of an application is subscribing and publishing to logs. This step is extremely useful for 1) informing
end users of application behavior and 2) application debugging during development and demonstration.

7.10.1 10.1. Information Flow Diagram

The figure below

44 Chapter 7. GridAPPS-D Application Structure

3.7%20--%20Lesson%203.7%20--%20Using%20the%20Timeseries%20API.ipynb

CHAPTER 8

GridAPPS-D Service Structure

[]:

45

GridAPPS-D, Release 2021_05.0

46 Chapter 8. GridAPPS-D Service Structure

CHAPTER 9

Introduction to the Common Information Model

This section introduces the CIM as a model format that is used for power system data and information exchange
across applications, platforms, and services. The CIM is used for all power system models in GridAPPS-D, and it is
important to have an understanding of the concepts and implementation of CIM for describing power systems using
unique mRIDs for each piece of equipment and associated modeling objects.

9.1 1. Introduction

9.1.1 1.1. What is the Common Information Model?

The Common Information Model (CIM) is an abstract information model that can be used to model an electrical
network and the various equipment used on the network.

CIM is widely used for data exchange of bulk transmission power systems, and is now beginning to find increasing
use for distribution modeling and analysis.

By using a common model, utilities, vendors, and researches from both academia and industry can reduce the effort
and cost of data integration, and instead focus on developing increased functionality for managing and optimizing the
smart grid of the future.

9.1.2 1.2. Why is Data Integration Important?

In a typical distribution utility there are hundreds and even in some cases thousands of software solutions and applica-
tions that are managed by the IT department. These applications are used and operated independently by the various
groups, departments, and organizations within the utility. Whenever a business process requires data from one system
or application to be transferred to another system or application, the data needs to be manually extracted from the first
database and then converted to the format of the other application’s database.

Two strategies exist for dealing with extreme level of effort needed to manage, update, export, convert, and import
data formats between different applications and databases.

47

GridAPPS-D, Release 2021_05.0

1) Reduce the number of databases by purchasing a large software suite from a single vendor using a single pro-
prietary data format that is internally-integrated and compatible with all the applications needed by utility

2) Adopt a common data integration platform that allows external integration between multiple software packages
using a shared data format

9.1.3 1.3. What does CIM Provide?

CIM is an information model, that is an abstract, formal representation of objects, their attributes, the relationships
between them, and the operations that can be performed on them. It is NOT a database structure or physical data store.
It is a technology-agnostic model for describing the properties of physical power system equipment, power flow data,
and messages that can be exchanged between various platforms and applications.

To describe various power system objects, CIM uses Class Diagrams and Sequence Diagrams created using the
Unified Modeling Language (UML). It also uses the Resource Description Framework (RDF) to describe classes and
attributes in an eXtensible Markup Language (XML) file format. The details of what is covered in each part of the
CIM is described in detail below.

9.2 2. Background and Structure of the CIM

9.2.1 2.1. UML Class Diagrams

The Unified Modeling Language (UML) provides 13 types of diagrams to define software architecture. One of the is
the UML Class Diagram, which visually represents object hierarchies and relationships.

First a review of basic concepts and terminology related to class diagrams:

• An object is any thing that we want to describe.

• A class represents a specific type of object.

• A class hierarchy is a model of the system showing every component as a separate class. The class hierarchy
should represent the real-world structure of the system.

• A package is a group of classes. Think of folders in a computer file explorer.

• Inheritance allows us to define very general “parent classes” and very specific “child classes”.

• Attributes are the properties that describe what type of thing the class represents.

• Associations are the relationships between various objects and how they are connected to each other.

Class diagrams show all the attributes and associations of various classes in a particular package in a single picture.
To read a class diagram, remember that

• Lines with an arrowhead indicate class inheritance. For example, in the figure below, ACLineSegment inherits
from Conductor, ConductingEquipment, Equipment and then PowerSystemResource. ACLineSegment inherits
all attributes and associations from its ancestors (e.g., length), in addition to its own attributes and ancestors.

• Lines with a diamond indicate composition. For example, Substations make up a SubGeographicalRegion,
which then make up a GeographicRegion.

• Lines without a terminating symbol are associations. For example, ACLineSegment has (through inheritance) a
BaseVoltage, Location and one or more Terminals.

• Italicized names at the top of each class indicate the ancestor (aka superclass), in cases where the ancestor does
not appear on the diagram. For example, PowerSystemResource inherits from IdentifiedObject.

48 Chapter 9. Introduction to the Common Information Model

GridAPPS-D, Release 2021_05.0

9.2. 2. Background and Structure of the CIM 49

GridAPPS-D, Release 2021_05.0

A complete set of UML Class Diagrams is provided in the Advanced CIM Modeling section. This section contains
class diagrams for all the objects used in GridAPPS-D and tables of properties to help you create and pass your own
custom SPARQL queries to the Blazegraph Database.

9.2.2 2.2. UML Sequence Diagrams

UML sequence diagrams are used to model the flow of messages, events, and actions between the entities of a system.
Time is represented vertically—showing the time sequence of interactions in the system. Displayed horizontally at the
top of the diagram are the applications or entities in the system.

CIM uses UML diagrams to represent work flow, operations processes, and other utility use-cases. For the purposes
of application development within GridAPPS-D, a detailed understanding of UML sequence diagrams is not required.

9.2.3 2.3. Resource Description Framework (RDF)

The Resource Description Framework (RDF) is a method of defining information models that is specified by the World
Wide Web Consortium (the W3C). Detailed documentation is available on the W3C website.

RDF focuses on making statements about objects in a subject-predicate-object expression. Each expression is com-
monly called a “triple” in RDF terminology. The subject is defined by naming a resource, the object denotes traits or
attributes associated with the subject, and the predicate expresses the relationship between the subject and the object.

The subject, or resource, in an RDF model is expressed as a Uniform Resource Identifier (URI). URIs are similar to
the Uniform Resource Locators (URLs) used as web addresses but are more general because they are not limited to
accessible data on the web. The predicate and object are also technically URIs and so also are just identifiers. The
subject-predicate-object triplets takes the form of expressing syntactical constructs like “a substation has a name”.

RDF Schema (RDFS) files describe the classes, attributes, and relationships of an information model and typically use
an .rdfs file format. RDF instance files describe object instances and typically use an .xml extension. RDF incremental
files describe changes to a set of object instances as described by an instance file, and typically use an .xml extension.

CIM uses RDF instance files to define power system models with unique master resource identifier (mRID) issued
by a model authority. The mRID is globally unique within an exchange context. Global uniqeness is easily achived
by using a UUID for the mRID. It is strongly recommended to do this. For CIM XML data files in RDF syntax, the
mRID is mapped to rdf:ID or rdf:about attributes that identify CIM object elements.

2.3.1 Key Concepts & Terminology from RDF

• URI References – CIM and GridAPPS-D use two URI references to identify properties and resources. These
identify the RDF format and the CIM classes used.

– <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

– <http://iec.ch/TC57/CIM100#>

• __

9.3 3. Summary of CIM XML Classes

This section provides a brief look at the classes of equipment modeled in CIM XML and used in GridAPPS-D.

Details of each package, the class diagram, and attributes of each class are provided in the relevant sections of the
reference guide to this lesson.

50 Chapter 9. Introduction to the Common Information Model

https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

GridAPPS-D, Release 2021_05.0

9.3.1 3.1. Names, Nodes, Terminals

The Core package provides very high level information of the distribution feeder model

3.1.1. IdentifiedObject

The Core package contains a class called IdentifiedObject. This class is very abstract and only contains attributes used
to reference the object either by a user or in software. The attributes of IdentifiedObject include *mRID*, which is
the master resource identifier that should be a globally 3-18 unique identifier of objects; the mRID does not have to be
human-readable. This identifier is generally intended to be used by software systems.

The attributes name, description, aliasName, and pathName are intended for providing identifiers that are human-
readable. It is common for names of objects within a utility to not be unique due to historical naming conventions,
the results of mergers and acquisitions, and the inability of other software systems to manage uniqueness. For these
reasons, there are no constraints on these names requiring them to be unique.

3.1.2. PowerSystemResource

The PowerSystemResource class inherits from IdentifiedObject and provides another relatively abstract class used in
the CIM. The PowerSystemResource class supports an association to a Company class. This relationship identifies the
company that operates the resource.

3.1.4. ConnectivityNode

The ConnectivityNode class has a relationship to the Terminal class. Each ConductingEquipment object has Terminals,
which are then connected to ConnectivityNodes. The terminals can be thought of as being closely related to the
conducting equipment, and the connectivity nodes are the glue that defines what equipment is connected to what other
equipment.

CIM also includes the TopologicalNode class, which is used to convert breaker-switch oriented power system models
to bus-branch models. This object is not used in GridAPPS-D, which does not feature transmission substation config-
urations (e.g. breaker-and-a-half, main-and-transfer-bus, ring-bus, etc.) that require topological processing of breaker
and switch positions to determine network topology and line connectivity.

9.3.2 3.2. Power System Equipment

CIM XML provides a number of classes for defining physical power system equipment, including lines, switches,
transformers, regulators, capacitors, and reactors.

3.2.1. Equipment and ConductingEquipment

The ConductingEquipment class inherits from an Equipment class which inherits from PowerSystemResource. This is
the parent class for most of the physical equipment that are used to model the power system.

3.2.2. Conductor and ACLineSegment

Directly inheriting from ConductingEquipment is the Conductor class. This class specifies the length of the conductor.

Each segment of a distribution line is defined in a CIM model as an ACLineSegment. This class contains the electrical
attributes commonly associated with a line needed for steady state analysis, including the positive-sequence and zero-
sequence resistance, reactance, conductance, and susceptance.

9.3. 3. Summary of CIM XML Classes 51

GridAPPS-D, Release 2021_05.0

More details are available in the ‘LineModel class diagram <>‘__ and ‘list of attributes <>‘__

3.2.4. PowerTransformer, TransformerWindings, and TapChanger

These three classes specify the portions of a step-down transformer and regulator.

The PowerTransformer class inherits from Equipment (not ConductingEquipment) and has associations to the Trans-
formerWinding class.

The majority of the electrical characteristics associated with the transformer are actually associated with the Trans-
formerWinding objects.

An association from the TransformerWinding class to the TapChanger class is used when the transformer has a tap
changer. The TapChanger class has as attributes for things like the tap steps and nominal setting. The TapChanger
class inherits from the PowerSystemResource class instead of the Equipment class, so it has few inherited attributes
and associations.

9.4 References

Portions of this tutorial have reproduced verbatim text and information from the EPRI report An Introduction to the
CIM for Integrating Distribution Applications and System and the CIM Ontology Diagrams

[]:

52 Chapter 9. Introduction to the Common Information Model

http://www.tut.fi/eee/research/adine/materiaalit/Active%20network/ICT/EPRI%20CIM%20for%20distribution.pdf
http://www.tut.fi/eee/research/adine/materiaalit/Active%20network/ICT/EPRI%20CIM%20for%20distribution.pdf
https://ontology.tno.nl/IEC_CIM/

CHAPTER 10

API Communication Channels

10.1 1. What are Channels in GridAPPS-D?

When communicating with the GridAPPS-D Platform through API, it is necessary to specify a communication chan-
nel, which tells the GridAPPS-D platform on which channel to communicate with the application and through which
API the message should be directed.

10.2 2. /queue/ vs /topic/

GridAPPS-D uses two types of communication channels to determine the visibility of the API call to other applications
and services.

10.3 2.1. Queue Channels

/queue/ is used for communication channels where only the GridAPPS-D Platform is listening to the API call.
These API calls are processed on a first-in, first-out basis. There is only one subscriber to the communication channel.

API calls to the Blazegraph database, Logs, Timeseries database, Config files, and Platform status are all queue
channels. All the GridAPPS-D Topics for queue channels typically do not change over the course of an application or
simulation run.

In the GridAPPSD-Python library, it is assumed that a topic is a queue channel if not otherwise specified. These two
GridAPPS-D Topic definitions are equivalent:

topic = '/queue/goss.gridappsd.process.request.data.powergridmodel'

topic = 'goss.gridappsd.process.request.data.powergridmodel'

53

GridAPPS-D, Release 2021_05.0

10.4 2.2. Topic Channels

/topic/ is used for communication channels where the API call is to broadcast to all subscribers through the GOSS
Message Bus, inlcuding other applications, services, FNCS Bridge, etc.

API calls to the Simulation, services, and active applications use topic channels to communicate and typically need to
the specify the Simulation ID, Service ID, and Application ID. The particular topic for such an API call will change
between simulations and instances, and so shortcut functions are provided in GridAPPSD-Python library to assist in
generating the correct Topic.

In GridAPPSD-Python, it is necessary to specify if a GridAPPS-D Topic is a /topic/ channel broadcasting to all
subscribers:

topic = "/topic/goss.gridappsd.simulation.input."+simulation_id

10.5 3. Static GridAPPS-D Topics

Below are a list of the most common topics and where they are used. The appropriate topic for each API call will
also be listed again in the subsequent lessons on each GridAPPS-D API. The list below can serve as an additional
convenient reference.

These topics remain the remain the same between platform, application, and simulation instances. The GridAPPSD-
Python Library shortcuts use all uppercase naming to indicate that these are static topic names.

10.5.1 Importing the Topics Library

When using topics in GridAPPSD-Python, it is recommended to import the topics library from gridappsd. This
enables you to rapidly call the correct topic without needing to search for the correct topic string. This also protects
your code from any changes inside the GridAPPS-D Platform if particular topic strings are deprecated or replaced –
the python library names will stay persistent between all Platform releases.

For static GridAPPS-D topics, import the library by running

[]: from gridappsd import topics as t

10.5.2 3.1. Request PowerGrid Model Data

This /queue/ channel is used to communicate with PowerGrid Model API to pull power system model info from
the the Blazegraph Database. The PowerGrid Model API is covered in detail in Lessons 2.2 and 2.3.

The base static string used is goss.gridappsd.process.request.data.powergridmodel, which can
be called using the .REQUEST_POWERGRID_DATA or .BLAZEGRAPH methods from the topics library

A sample message that would be passed with this topic is

[2]: from gridappsd import topics as t

Sample PowerGrid Model message, explained in Lesson 2.2.
message = '{"requestType": "QUERY_MODEL_NAMES", "resultFormat": "JSON"}'

gapps.get_response(t.REQUEST_POWERGRID_DATA, message)

54 Chapter 10. API Communication Channels

GridAPPS-D, Release 2021_05.0

[2]: {'data': {'modelNames': ['_204AC68D-C4B3-4D93-A2B5-B1C195C49954',
'_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62',
'_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3',
'_503D6E20-F499-4CC7-8051-971E23D0BF79',
'_5B816B93-7A5F-B64C-8460-47C17D6E4B0F',
'_67AB291F-DCCD-31B7-B499-338206B9828F',
'_77966920-E1EC-EE8A-23EE-4EFD23B205BD',
'_9CE150A8-8CC5-A0F9-B67E-BBD8C79D3095',
'_AAE94E4A-2465-6F5E-37B1-3E72183A4E44',
'_C1C3E687-6FFD-C753-582B-632A27E28507',
'_E407CBB6-8C8D-9BC9-589C-AB83FBF0826D']},

'responseComplete': True,
'id': '365753873'}

[]: from gridappsd import topics as t

Sample PowerGrid Model message, explained in Lesson 2.2.
message = '{"requestType": "QUERY_MODEL_NAMES", "resultFormat": "JSON"}'

gapps.get_response(t.BLAZEGRAPH, message)

10.5.3 3.2. Request Timeseries Data

This /queue/ channel is used to communicate with the Timeseries API and Timeseries database, which stores real-
time and historical data, such as weather information and AMI meter readings. The Timeseries database is covered in
detail in Lesson 2.XX. A sample message that would be passed with this topic is

Text String: The topic can be specified as a static string:

• topic = "goss.gridappsd.process.request.data.timeseries"

• gapps.get_response(topic, message)

GridAPPSD-Python Library Method: The correct topic can also be imported from the GridAPPSD-Python topics
library:

• from gridappsd import topics as t

• gapps.get_response(t.TIMESERIES, message)

10.5.4 3.3. Request Platform Status

This topic is used to check that status of the GridAPPS-D Platform.

Text String: The topic can be specified as a static string:

• topic = "/queue/goss.gridappsd.process.request.status.platform"

• gapps.get_response(topic, message)

GridAPPSD-Python Library Method: The correct topic can also be imported from the GridAPPSD-Python topics
library.

• from gridappsd import topics as t

10.5. 3. Static GridAPPS-D Topics 55

GridAPPS-D, Release 2021_05.0

• gapps.get_response(t.PLATFORM_STATUS, message)

10.5.5 3.4. Querying Log Data

This topic is used to query log data in the MySQL Database using the Logging API

Note: This topic is different from the one used to subscribe to real-time log data being published by an ongoing
simulation. This topic is used for querying data already stored in the database.

Text String: The topic can be specified as a static string:

• topic = "goss.gridappsd.process.request.data.log"

• gapps.get_response(topic, message)

GridAPPSD-Python Library Method: The correct topic can also be imported from the GridAPPSD-Python topics
library:

• from gridappsd import topics as t

• gapps.get_response(t.LOGS, message)

10.5.6 3.5. Subscribing to Platform Logs

This topic is used to subscribe the to logs created by the GridAPPS-D Platform, such as which managers and core
services have been started and are running.

Text String: The topic can be specified as a static string:

• topic = "goss.gridappsd.process.request.data.timeseries"

• gapps.get_response(topic, message)

GridAPPSD-Python Library Function: The correct topic can also be imported from the GridAPPSD-Python topics
library. Note that this is a python function similar to the dynamic topics presented in the next section.

• ‘from gridappsd.topics import platfor_log_topic

• topic = platform_log_topic()

• gapps.get_response(topic, message)

[Return to Top]

10.6 4. Dynamic GridAPPS-D Topics

Several GridAPPS-D topics are unique to each application, simulation, or service instance. These topics are dynamic
and will change from instance to instance.

The GridAPPS-D Platform will require that the topic specify the particular instance so that the API call can be delivered
to the correct simulation or service.

To assist with the task of creating a dynamic topic that automatically updates between instances, several function are
available in the GridAPPSD-Python topics library.

The available GridAPPSD-Python functions for dynamic topics are

56 Chapter 10. API Communication Channels

GridAPPS-D, Release 2021_05.0

• simulation_input_topic(simulaton_id) – Gets the topic to write data to for the simulation

• simulation_output_topic(simulation_id) – Gets the topic for subscribing to output from the
simulation

• simulation_log_topic(simulation_id) – Topic for the subscribing to the logs from the simulation

• service_input_topic(service_id, simulation_id) – Utility method for getting the input topic
for a specific service

• service_output_topic(service_id, simulation_id) – Utility method for getting the output
topic for a specific service

• application_input_topic(application_id, simulation_id) – Utility method for getting
the input topic for a specific application

• application_output_topic(application_id, simulation_id) – Utility method for getting
the output topic for a specific application

10.6.1 4.1. Subscribe to Simulation Output

This topic is used to communicate with the Simulation API, which is covered in detail in Lesson XX. The Simulation
Output Topic is used to subscribe to the simulation output, enabling applications to listen to switching actions, obtain
equipment measurements, and so on.

The GridAPPSD-Python shortcut function for generating the correct topic is

simulation_output_topic(simulation_id)

There are two ways to use the function. The first is to call the library function directly. The second is to use it as part
of a class definition.

1) Call the topic function directly

[]: # Import GridAPPS-D Topic Function:
from gridappsd.topics import simulation_output_topic

Call GridAPPSD-Python Topic Function
topic = simulation_output_topic(simulation_id)

Print to Notebook Kernel:
print(topic)

2) Use the topic function in a class definition

[]: # Import GridAPPS-D Topic Function:
from gridappsd.topics import simulation_output_topic

Define Subscription Class
class MySubscription(object):

def __init__(self,simulation_id):
self._subscribe_to_topic = simulation_output_topic(simulation_id)

Define Main Function:
def _main():

subscription = MySubscription(simulation_id)
print(subscription._subscribe_to_topic)

(continues on next page)

10.6. 4. Dynamic GridAPPS-D Topics 57

GridAPPS-D, Release 2021_05.0

(continued from previous page)

Call Main Function:
_main()

10.6.2 4.2. Publish to Simulation Input

This topic is used to communicate with the Simulation API, which is covered in detail in Lesson XX. The Simulation
Input Topic is used to publish commands to the GOSS Message Bus, which are then broadcast to all applications,
services, and simulations that are listening. Examples of actions that will use this topic include taking switching
actions, adjusting DER setpoints, and changing regulator taps.

The GridAPPSD-Python shortcut function for generating the correct topic is

simulation_input_topic(simulation_id)

There are two ways to use the function. The first is to call the library function directly. The second is to use it as part
of a class definition.

1) Call the topic function directly

[]: # Import GridAPPS-D Topic Function:
from gridappsd.topics import simulation_input_topic

Call GridAPPSD-Python Topic Function
topic = simulation_output_topic(simulation_id)

Print to Notebook Kernel:
print(topic)

2) Use the topic function in a class definition

[]: # Import GridAPPS-D Topic Function:
from gridappsd.topics import simulation_input_topic

Define Subscription Class
class MySimulationPublisher(object):

def __init__(self,simulation_id):
self._publish_to_topic = simulation_input_topic(simulation_id)

Define Main Function:
def _main():

subscription = MySimulationPublisher(simulation_id)
print(subscription._publish_to_topic)

Call Main Function:
_main()

10.6.3 4.3. Subscribe to Simulation Logs

This topic is used to communicate with the Simulation API, which is covered in detail in Lesson XX. The Simulation
Output Topic is used to subscribe to the simulation output, which applications use to * Listen to switching actions *
Obtaining equipment measurements * *GET FULL LIST*

58 Chapter 10. API Communication Channels

GridAPPS-D, Release 2021_05.0

The GridAPPSD-Python shortcut function for generating the correct topic is

simulation_output_topic(simulation_id)

There are two ways to use the function. The first is to call the library function directly. The second is to use it as part
of a class definition.

1) Call the topic function directly

[]: # Import GridAPPS-D Topic Function:
from gridappsd.topics import simulation_output_topic

Call GridAPPSD-Python Topic Function
topic = simulation_output_topic(simulation_id)

Print to Notebook Kernel:
print(topic)

2) Use the topic function in a class definition

[]: # Import GridAPPS-D Topic Function:
from gridappsd.topics import simulation_output_topic

Define Subscription Class
class MySubscription(object):

def __init__(self,simulation_id):
self._subscribe_to_topic = simulation_output_topic(simulation_id)

Define Main Function:
def _main():

subscription = MySubscription(simulation_id)
print(subscription._subscribe_to_topic)

Call Main Function:
_main()

10.6. 4. Dynamic GridAPPS-D Topics 59

GridAPPS-D, Release 2021_05.0

60 Chapter 10. API Communication Channels

CHAPTER 11

API Message Structure

This tutorial introduces the format used for passing messages to the GridAPPS-D API and how to wrap those messages
using the GridAPPSD-Python Library.

11.1 1. Python Dictionaries VS JSON Strings

One of the confusing aspects of passing messages to and from the GridAPPS-D Platform and APIs is the difference
between Python Dictionaries and JSON scripts, which look identical.

JSON is a serialization format. That is, JSON is a way of representing structured data in the form of a textual string.

A Python Dictionary is a data structure. That is, it is a way of storing data in memory that provides certain abilities
to the code: in the case of dictionaries, those abilities include rapid lookup and enumeration.

It is possible to convert between the two by importing the JSON library: import json. Full documentation of
JSON-Python interoperability and usage is available in Python Docs.

Use the json.dumps() method to serialize a dictionary as a JSON string. Use the json.loads() to import a
JSON file and convert it into a dictionary. But the two are not the same: dictionaries are for working with data in your
program, and JSON is for storing it or sending it around between programs.

With the GridAPPSD-Python Library, it is possible to pass query arguments as either a python dictionary or as a string.
Both approaches will provide the same results.

1) Format API call message as a dictionary

This is the most direct approach, and will be used most often throughout this set of notebook tutorials. The format and
structure of the python dictionary is explained in the next section.

[]: model_mrid = "_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62" # IEEE 13 Node used for all
→˓example queries

Format message as python dictionary

(continues on next page)

61

https://docs.python.org/3/library/json.html

GridAPPS-D, Release 2021_05.0

(continued from previous page)

message = {
"requestType": "QUERY_OBJECT_IDS",
"resultFormat": "JSON",
"modelId": model_mrid,
"objectType": "LoadBreakSwitch"

}

[]: # Specify correct topic
topic = "goss.gridappsd.process.request.data.powergridmodel"

Pass API Call to GridAPPS-D Platform
gapps.get_response(topic, message)

2) Format API call message as a string

This approach uses quotations (either ' ' or " ") to wrap the API call (identical to the python dictionary) as JSON-
formatted text, concatenated into a string.

[]: model_mrid = "_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62" # IEEE 13 Node used for all
→˓example queries

Format message as JSON text wrapped as a string
message = """
{

"requestType": "QUERY_OBJECT_IDS",
"resultFormat": "JSON",
"modelId": "%s",
"objectType": "LoadBreakSwitch"

}
""" % model_mrid

[]: # Specify correct topic
topic = "goss.gridappsd.process.request.data.powergridmodel"

Pass API Call to GridAPPS-D Platform
gapps.get_response(topic, message)

11.2 2. Structure of a GridAPPS-D Message

The structure of messages in GridAPPS-D follows that of a Python Dictionary using a data structure that is more
generally known as an associative array. An excellent tutorial on advanced usage of the python dictionary structure is
available on Real Python.

A dictionary consists of a collection of key-value pairs. Each key-value pair maps the key to its associated value.

• A dictionary is defined by enclosing a comma-separated list of key-value pairs in curly braces ({ }).

• A colon (:) separates each key from its associated value.

• Square brackets ([]) are used for a list of values associated to a particular key.

• Additional curly braces ({ }) can be used for cases where multiple key-value pairs (e.g. equipment setpoints)
are associated with a particular key (e.g. an equipment class).

The general dictionary format used for GridAPPS-D messages is

62 Chapter 11. API Message Structure

https://realpython.com/python-dicts/

GridAPPS-D, Release 2021_05.0

message = {
"key1": "value1",
"key2": ["value21", "value22"],
"key3": {

"key31": "value31",
"key32": "value32"
},

.

.

.
"key": "value"

}

Important: Be sure to pay attention to placement of commas (,) at the end of each line. Commas are placed at the
end of each line except the last line. Incorrect comma placement will result in a syntax exception.

The particular set of key-value pairs for each GridAPPS-D API is covered in detail in Lessons 2.1 through 2.7.

11.3 3. Parsing Returned Data

After passing an API call, the GridAPPS-D Platform returns a JSON string that is subsequently converted into a python
dictionary by the GridAPPSD-Python Library. This section will outline how to parse the data returned.

For this example, we are going to use a simple query from the PowerGrid Model API (covered in Lesson 2.2.) to
obtain the details of a piece of equipment using its unique mRID (introduced in the next lesson).

[]: model_mrid = "_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62" # IEEE 13 Node used for all
→˓example queries

Specify correct topic
topic = "goss.gridappsd.process.request.data.powergridmodel"

message = {
"modelId": model_mrid,
"requestType": "QUERY_OBJECT_DICT",
"resultFormat": "JSON",
"objectType": "LinearShuntCompensator",

}

Pass API Call to GridAPPS-D Platform
response = gapps.get_response(topic, message)

import json
with open("foo.txt", 'w') as out:

out.write(json.dumps(response, indent=2))

The structure of the python dictionary returned by the API is three key-value pairs for the keys of

• 'data' – this is the data you requested

• 'responseComplete' – true or false

• 'id' – unique id associated with the API response dictionary

A typical API response will the structure below:

11.3. 3. Parsing Returned Data 63

GridAPPS-D, Release 2021_05.0

response = {
'data': [{'key1': 'value1',

'key2': ['value21', 'value22']},
{'key1': 'value1',
'key2': ['value21', 'value22']}],

'responseComplete': True,
'id': '12345678'

}

The first step is to filter the dictionary to just the data requested: response['data']. The result will be a list
object.

Note: some API calls will also need to additional filters of [results][bindings]. The STOMP Client presented
in the next section is very helpful for previewing the structure of the dictionary returned by GridAPPS-D.

[]: response = gapps.get_response(topic, message)
response_obj = response['data']

As response_obj is of the python type list rather than dict, it is necessary to use numerical indices instead of
keys to access the values. A simple for loop is very helpful here.

In this example, we want to filter the results to create a list that contains just the name and mRID of the capacitor
banks in the model.

[]: capacitors = []
for index in response_obj:

cap_name = index['IdentifiedObject.name']
cap_mrid = index['id']
message = dict(name = cap_name,

mrid = cap_mrid)
capacitors.append(message)

[Return to Top]

11.4 4. Using the STOMP Client

The GridAPPS-D Visualization App includes a feature to pass API call messages through the GUI using the Simple
Text Oriented Messaging Protocol (STOMP).

Open the Viz App, which is hosted on localhost:8080 (note: cloud-hosted installations will use the IP address of the
server).

64 Chapter 11. API Message Structure

http://localhost:8080/

GridAPPS-D, Release 2021_05.0

Log in and click on the menu in the top left corner of the browser window:

|viz_top_menu.png|

Select Stomp Client from the drop-down menu:

|viz_menu_stomp.png|

This opens the STOMP Client, which can be used to pass a message to any of the GridAPPS-D APIs to preview results
or debug the API call message.

|viz_stomp_client.png|

11.4. 4. Using the STOMP Client 65

GridAPPS-D, Release 2021_05.0

11.4.1 4.1. Specifying the Topic

The appropriate GridAPPS-D topic needs to be copied and pasted into the Destination Topic box at the top of the
window. The topic specifies on which channel the STOMP Client will communicate with the GridAPPS-D Platform
and to which API the message needs to be delivered.

A complete list of GridAPPS-D topics was provided in Lesson 1.4. and will also be provided in context for each of
the API calls detailed in subsequent lessons.

IMPORTANT: Remember to remove the python wrapping quotations at the beginning and end of the topic. For
example, if the python-wrapped topic was

topic = "goss.gridappsd.process.request.data.powergridmodel" # Specify the
topic

then the topic that is entered in the Stomp Client Destination Topic box is simply

goss.gridappsd.process.request.data.powergridmodel

IMPORTANT: The GridAPPSD-Python shortcut functions will not work in the STOMP Client. The full text string
versions must be used.

11.4.2 4.2. Entering the Request Message

The Request box accepts an API call message identical to those provided in these notebook lessons.

IMPORTANT: Remember to remove the python wrapping at the beginning and end of the message. For example, if
the python-wrapped message was

message = "{"requestType": "QUERY_MODEL_NAMES", "resultFormat": "JSON"}" #
Sample PowerGrid Model API Call

then the message that is entered in the Stomp Client Request box is simply

{"requestType": "QUERY_MODEL_NAMES", "resultFormat": "JSON"}

The STOMP client will automatically flag any errors in the JSON message.

11.5 4.3. Submitting a Request

After entering the topic and message, click Send request to send the API call to the GridAPPS-D Platform. The
response will be displayed in the box below.

|viz_stomp_send_request-2.png|

It can be seen that the response from the STOMP Client is identical to that obtained by passing the same topic and
message using the GridAPPSD-Python Library:

[]: from gridappsd import GridAPPSD # Import Libraries
gapps = GridAPPSD("('localhost', 61613)", username='system', password='manager') #
→˓Connect to Platform
topic = "goss.gridappsd.process.request.data.powergridmodel" # Specify correct Topic
message = {

"requestType": "QUERY_MODEL_NAMES",
"resultFormat": "JSON"

} # Sample PowerGrid Model API message
gapps.get_response(topic, message) # Pass API call to Platform

66 Chapter 11. API Message Structure

Lesson%201.4.%20GridAPPS-D%20Topics.ipynb

CHAPTER 12

Indices and tables

• genindex

• modindex

• search

67

	Windows 10 Installation
	Virtual Machine & Docker Setup
	Installing GridAPPS-D
	Running GridAPPS-D
	Installing Python Tutorials

	Using the GridAPPS-D Viz
	Docker Shortcuts
	GridAPPS-D Introduction
	1. What is GridAPPS-D?
	2. GridAPPS-D Platform Characteristics
	2.3. Replicable
	2.4. Flexible Distribution Simulation
	3. Data Representation & Management
	4. Real-Time Distribution Simulation
	5. Using the GridAPPS-D Platform

	GridAPPS-D Architecture
	1. GridAPPS-D Architecture
	2. GridAPPS-D User Roles
	3. Integration with External Vendor Systems
	4. GridAPPS-D Applications
	5. GridAPPS-D Services
	6. GridAPPS-D Application Programming Interface
	7. GOSS Message Bus
	8. GridAPPS-D Core Services
	9. Co-Simulation Framework
	10. Database Structures

	GridAPPS-D Python Library
	Getting Started
	1. A First Course in GridAPPSD-Python
	2. Building Blocks of an Application

	GridAPPS-D Application Structure
	1. Application Structure
	2. Querying for the Power System Model
	3. Querying for Measurement mRIDs
	4. Querying for Weather Data
	5. Configuring a Parallel Simulation
	6. Processing Measurements & App Core Algorithm
	7. Subscribing to Simulation Output
	8. Publishing Equipment Commands
	9. Querying Historical & Timeseries Data
	10. Subscribing and Publishing to Logs

	GridAPPS-D Service Structure
	Introduction to the Common Information Model
	1. Introduction
	2. Background and Structure of the CIM
	3. Summary of CIM XML Classes
	References

	API Communication Channels
	1. What are Channels in GridAPPS-D?
	2. /queue/ vs /topic/
	2.1. Queue Channels
	2.2. Topic Channels
	3. Static GridAPPS-D Topics
	4. Dynamic GridAPPS-D Topics

	API Message Structure
	1. Python Dictionaries VS JSON Strings
	2. Structure of a GridAPPS-D Message
	3. Parsing Returned Data
	4. Using the STOMP Client
	4.3. Submitting a Request

	Indices and tables

