GridAPPS-D
Release 2021 _05.0

The GridAPPS-D Team and Community

Jul 04, 2021

Windows 10 Installation

1.1
1.2
1.3
1.4

Virtual Machine & Docker Setup
Installing Grid APPS-D
Running GridAPPS-D

Installing Python Tutorials

Using the GridAPPS-D Viz

Docker Shortcuts

GridAPPS-D Introduction

4.1
4.2
4.3
4.4
4.5

1
2
3
4
5

. What is GridAPPS-D?
. GridAPPS-D Platform Characteristics
. Data Representation & Management
. Real-Time Distribution Simulation
. Using the GridAPPS-D Platform

GridAPPS-D Architecture

5.1
52
53
54
55
5.6
5.7
5.8
5.9

1.

0N kAW

9.

. GridAPPS-D Application Programming Interface

.GOSS MessageBus oL
. GridAPPS-D Core Services
Co-Simulation Framework
5.10 10. Database Structures

GridAPPS-D Python Library

6.1
6.2
6.3

Getting Started
. A First Course in GridAPPSD-Python
. Building Blocks of an Application

1
2

GridAPPS-D Application Structure

7.1
7.2
7.3
7.4
7.5
7.6

1

AN L B~ W N

. Application Structure 0. ..
. Querying for the Power System Model
. Querying for Measurement mRIDs
. Querying for WeatherData
. Configuring a Parallel Simulation

. Processing Measurements & App Core Algorithm

GridAPPS-D Architecture
. GridAPPS-D UserRoles
. Integration with External Vendor Systems
. GridAPPS-D Applications
. GridAPPS-D Services

INSTALLATION RUNTIME

~N 9O W W

11

13

15

........................ 15
........................ 15
........................ 16
........................ 17
........................ 18

10

11

12

13

14

7.7 7. Subscribing to Simulation Output e

7.8 8. Publishing Equipment Commands e e e
7.9 9. Querying Historical & Timeseries Data.
7.10 10. Subscribing and PublishingtoLogs L oo

GridAPPS-D Service Structure

Introduction to the Common Information Model

9.1 L.Introduction e e e e
9.2 2. Background and Structure of the CIM e
9.3 3. Summary of CIM XML Classes ittt et
9.4 References i i i e e e e e e e e

API Communication Channels

10.1 1. What are Channels in GridAPPS-D?
10.2 2. /queue/ vs /TOPIC/ o e e e e e e e e e e
10.3 2.1. Queue Channels e e e e e
104 2.2.TopicChannels L i e e e
10.5 3. Static GridAPPS-D Topics o o e e e e e
10.6 4. Dynamic GridAPPS-D Topics e

API Message Structure

11.1 1. Python Dictionaries VS JSON Strings i
11.2 2. Structure of a GridAPPS-D Message
11.3 3. ParsingReturned Data e
11.4 4. Using the STOMP Client L it e e e e e e e
11.5 4.3. Submittinga Request e

Using the PowerGrid Models API

12.1 1. Introduction to the PowerGrid Model APT,
12.2 2. APISyntax OVEIVIEW v i v o e
12.3 3. Querying for Feeder Model Info
12.4 4. Querying for ObjectInfo o
12.5 5. Querying for Object Measurements o o vt e e e
12.6 5.3. Filtering Returned Data e
12.7 6. GridAPPSD-Python Shortcut Methods
12.8 7. Available Models in Default Installation

Using the Configuration File API

13.1 1. Introduction to the Configuration File API
13.2 2. APISyntax OVEIVIEW v v v i et e
13.3 3. Querying for GridLab-D Configuration Files
13.4 3.2. Query for GridLab-D Base GLM File.
13.5 3.3. Query for GridLab-D Symbols File
13.6 3.4. Query for GridLab-D Measurement Types
13.7 4. Querying for CIM Dictionary Files
13.8 5. Querying for OpenDSS Configuration Files

Indices and tables

51

53
53
54
56
58

59
59
59
59
60
60
63

67
67
68
69
70
72

73
73
73
75
76
79
81
81
82

85
85
85
87
88
89
90
90
91

97

GridAPPS-D, Release 2021_05.0

ridAPPS-

This will be on the main page here!

INSTALLATION RUNTIME 1

GridAPPS-D, Release 2021 05.0

2 INSTALLATION RUNTIME

CHAPTER
ONE

WINDOWS 10 INSTALLATION

This section contains detailed installation instructions and runtime environment tips for running Grid APPS-D and its
dependencies on a Windows 10 machine.

1.1 Virtual Machine & Docker Setup

1.1.1 Table of Contents
A typical Windows 10 installation does not include several of the tools needed to run the Grid APPS-D Platform Several
software packages need to be installed prior to installing GridAPPS-D in the next step
Installation Steps:
o [. Verify System Requirements
e 2. Verify OS Build
e 3. Install Windows Subsystem for Linux
— 3.1. Enable WSL
— 3.2. Upgrade to WSL2
— 3.3. Install Linux Ubuntu OS
— 3.4. Set up Ubuntu in WSL
* 4. Install Docker for Windows

1.1.2 1. Verify System Requirements

* OS:
— Windows 10, Version 2004 or higher, with Build 19041 or higher
« RAM:
— 8GB (absolute minimum for 13 and 123 node models, may encounter memory overload during installation
);
— 16GB (preferred for small models, minimum for 8500/9500 node models);
— 32GB (recommended for application development)
* Disk Space:

— 15GB required for installation

GridAPPS-D, Release 2021 05.0

Note: The download size is quite large, so it is recommended to use a fiber or ethernet interent connection, rathered
than a metered hotspot to avoid excessive data usage charges.

1.1.3 2. Verify OS Build

To check your OS build, type winver in the Cortana seach bar:
[win_setup_run_winver.png|
Check to see if your OS is

 For x64 systems: Version 1903 or higher, with Build 18362 or higher.

* For ARM64 systems: Version 2004 or higher, with Build 19041 or higher.
[win_setup_goodbad_winver.png|

If not, run Windows Update to get the latest verion of Windows 10 available for your machine. It may take some time
for the new OS to download. Multiple restarts are typical while upgrading the windows version.

1.1.4 3. Install Windows Subsystem for Linux

GridAPPS-D and the associated docker containers will run using the Windows Subsystem for Linux (WSL), which is
a new feature to Windows 10 that enables linux code to run natively in Windows without a separate virtual machine.
The steps in this section are also available on the Microsoft website

3.1. Enable WSL

Open Windows PowerShell as an administrator:
|[win_setup_open_powershell.png|
Enable WSL by entering

dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /
norestart

[win_setup_enable_wsl2.png|

Then, without restarting, enable the virtual machine platform by entering

dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart
[win_setup_enable_VM.png|

When completed, restart your machine. It may take a few minutes for the new settings to be applied while restarting.

4 Chapter 1. Windows 10 Installation

https://docs.microsoft.com/en-us/windows/wsl/install-win10

GridAPPS-D, Release 2021 05.0

3.2. Upgrade to WSL2

Download the latest WSL2 package .msi installer from the Microsoft repository
Run the update package to install WSL2 using the wizard:
[win_setup_WSL_wizard.png|

Open Windows PowerShell again and update the settings to use WSL2 by entering

wsl --set-default-version 2

3.3. Install Linux Ubuntu OS

Open the Microsoft Store app, and search for Ubuntu and install the desired version (available versions are 16.04,
18.04, and 20.04)

[win_setup_ubuntu_store.png|

When it has finished downloading, click Launch.

[win_setup_ubuntu_launch.png|

3.4. Set up Ubuntu in WSL

Wait for the Ubuntu OS to install.
[win_setup_ubuntu_setup.png|
Select a username and password. These do not need to be the same as your Windows or Microsoft Account login.

[win_setup_ubuntu\ username2.png|

1.1.5 4. Install Docker for Windows

Download and run Docker Desktop for Windows from Docker Hub
Be sure to select “Install required components for WSL2”
[win_setup_docker_wizard.png|

After restarting your machine, Docker should start automatically, and you will see a notification stating “Linux WSL2
containers are starting”

[win_setup_containers_starting.png|

1.1. Virtual Machine & Docker Setup 5

https://wslstorestorage.blob.core.windows.net/wslblob/wsl_update_x64.msi
https://desktop.docker.com/win/stable/Docker%20Desktop%20Installer.exe

GridAPPS-D, Release 2021 05.0

1.2 Installing GridAPPS-D

1.2.1 1. Clone the GridAPPS-D Docker repository

Disconnect from your corporate/laboratory VPN (if applicable) and open the Ubuntu terminal:
[win_setup_open_ubuntu.png|

Clone the GridAPPS-D repository:

git clone https://github.com/GRIDAPPSD/gridappsd-docker
[win_setup_clone_gapps.png|

1.2.2 2. Install the GridAPPS-D Docker Containers

Change directories into the gridappsd-docker folder and start the latest stable release of the Grid APPS-D platform.
¢ cd gridappsd-docker
e ./run.sh
It is possible to specify a particular release tag using the -t option and the release tag
e ./run.sh -t develop - use the develop branch with latest beta features
e ./run.sh -t releases_2021.03.0 - use the March 2021 release
e ./run.sh -t releases_2020.09.0 - use the September 2020 release
A complete set of release is available in the associated readthedocs page
[win_setup_gapps_run.sh.png|

Wait for the platform to download the required docker containers. This is a very large package and will take several
minutes.

[win_setup_pulling_containers.png|
After the containers have finished downloading, they will automatically be created and then launched:

[win_setup_containters_pulled.png|

1.2.3 3. Launch the GridAPPS-D Platform

When all the containers are running, the terminal will move inside the docker enviroment, which has its own internal
directories and path.

Start the Grid APPS-D platform inside the docker container by running
./run-gridappsd.sh

[win_setup_start_platform.png|

The GridAPPS-D platform is now installed and running.

To confirm, open localhost:8080 to access the GridAPPS-D Visualization App:

6 Chapter 1. Windows 10 Installation

https://gridappsd.readthedocs.io/en/latest/overview/index.html#release-history
http://localhost:8080/

GridAPPS-D, Release 2021_05.0

sysiem

*Congratulations! You have successfully installed the GridAPPS-D Platform, and the GridAPPSD-Python de-
velopment environment!*

1.3 Running GridAPPS-D

1.3.1 1. Starting the Platform

If you are accessing this module after completing the installation steps in the previous procedure, then the GridAPPS-D
Platform is already running.

When you start your machine next time, you will need to start the Grid APPS-D Platform again. To do this, change
directories into gridappsd-docker and run the . /run. sh script

¢ cd gridappsd-docker

e ./run.shor ./run.sh -t release_tag

1.3.2 2. Stopping the Platform
1.3.3 3. Restarting the Platform

1.3.4 4. Pulling Updated Containers

1.4 Installing Python Tutorials

1.4.1 1. Install Git for Windows

Install git for windows. This package is required to download and run the python notebooks.

1.3. Running GridAPPS-D 7

GridAPPS-D, Release 2021 05.0

Open gitforwindows.org and download the latest version.

Use the installation wizard with the recommended settings to complete installation.
[win_setup_install_git.png|

[Return to Top]

1.4.2 2. Install Anaconda or Miniconda

Download the latest version of the Miniconda from the Conda.io website:

* Python 3.8 for 64-bit Windows

* Python 3.8 for 32-bit Windows
Use the installation wizard with the recommended settings to complete installation.
[win_setup_miniconda.png|

After installation is complete, launch the Anaconda Prompt (Miniconda3) from the Start Menu or by typing
anaconda in the Cortana toolbar

[win_setup_launch_miniconda.png|
The miniconda terminal window will open
[win_setup_miniconda_terminal.png|

[Return to Top]

1.4.3 3. Install Jupyter Lab

In the miniconda terminal window, run
pip install jupyterlab

to install the Jupyter environment for executing the python notebooks. It may take a couple minutes to collect and
install all the required packages.

[win_setup_install\ jupyter.png|
[Return to Top]

1.4.4 4. Install GridAPPSD-Python

In the Miniconda terminal window, download and install Grid APPSD-Python by running

pip install git+https://github.com/GRIDAPPSD/gridappsd-python.git@develop#egg=gridappsd
to download the Grid APPSD-Python library and required packages.

[win_setup_install_gapps\ python.png|

GridAPPSD-Python and all dependencies should have been automatically added to your anaconda path after comple-
tion.

[Return to Top]

8 Chapter 1. Windows 10 Installation

https://gitforwindows.org/
https://docs.conda.io/en/latest/miniconda.html
https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe
https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86.exe

[1:

[1:

GridAPPS-D, Release 2021 05.0

1.4.5 5. Download Python Training Notebooks

In the miniconda terminal window, clone the python notebooks by running git clone https://github.com/
GRIDAPPSD/gridappsd-hackathon to download the python training notebooks.
[win_setup_install_notebooks.png|

By default, the notebooks will be saved in the directory C:\Users\username\gridappsd-hackathon

Close the miniconda terminal

If running on a remote server (e.g. AWS cloud or university / laboratory server farm), start the notebooks by running

jupyter notebook --port 8890 --no-browser --ip='0.0.0.0'

1.4. Installing Python Tutorials 9

GridAPPS-D, Release 2021 05.0

10 Chapter 1. Windows 10 Installation

CHAPTER
TWO

USING THE GRIDAPPS-D VIZ

11

GridAPPS-D, Release 2021 05.0

12 Chapter 2. Using the GridAPPS-D Viz

CHAPTER
THREE

DOCKER SHORTCUTS

13

GridAPPS-D, Release 2021 05.0

14 Chapter 3. Docker Shortcuts

CHAPTER
FOUR

GRIDAPPS-D INTRODUCTION

4.1 1. What is GridAPPS-D?

GridAPPS-D™ is an open-source platform that accelerates development and deployment of portable applications for
advanced distribution management and operations. It is built in a linux environment using Docker, which allows large
software packages to be distributed as containers. Docker tools will be discussed in Lesson

The GridAPPS-D™ project is sponsored by the U.S. DOE’s Office of Electricity, Advanced Grid Research. Its purpose
is to reduce the time and cost to integrate advanced functionality into distribution operations, to create a more reliable
and resilient grid.

GridAPPS-D enables standardization of data models, programming interfaces, and the data exchange interfaces for:
¢ devices in the field
* distributed apps in the systems
e applications in the control room
The platform provides
* robust testing tools for applications
* distribution system simulation capabilities
* standardized research capability
* reference architecture for the industry

* application development kit

4.2 2. GridAPPS-D Platform Characteristics

4.2.1 2.1. Vendor / Vendor Platform Independent

The GridAPPS-D Platform and application development environment is independent of any specific vendor or vendor
platform, in other words vendor neutral. The results of this effort are intended to be useful and available to any vendor
or application developer who wishes to apply them or incorporate them into existing or future products.

15

GridAPPS-D, Release 2021 05.0

4.2.2 2.2. Standards-based Architecture

GridAPPS-D is the first platform for energy and distribution management systems that is designed with standards for
data integration, including data models, programming interfaces, and data exchange interfaces between grid devices
in the field, distributed applications in utility systems, and applications in utility control rooms. This means that the
applications developed using GridAPPS-D make them broadly applicable and interchangeable across utility systems,
reducing the cost and time for utilities to integrate new functionality.

To the greatest extent possible, the Grid APPS-D Platform incorporates and supports industry standards, in particular
interoperability standards, including the power system model representation using the Common Information Model
(CIM) and communications with other platforms / physical equipment through DNP3, IEEE 2030.5, and the open field
messaging bus (OpenFMB)

4.2.3 2.3. Replicable

As a reference implementation of a standards-based architecture, advanced applications and services developed with
GridAPPS-D Platform should be replicable, with the ability to be deployed at multiple locations on different distribution
feeders with almost no code customization.

4.2.4 2.4. Flexible Distribution Simulation

The GridAPPS-D Platform enables users to run real-time quasi-static simulations of large distribution network models
with real-time load data, thermal co-simulation of houses, real-time weather data, and real-time operation of switches,
DERs, and volt-var control equipment. The platform supports multiple distribution simulators through a co-simulation
bridge that abstracts the simulation configuration details to a simple APIL.

4.3 3. Data Representation & Management

A key to GridAPPS-D is providing the distribution system application developer with a standardized approach to data.
The intent is to allow the developer to make logical references to data referencing standard data models and interfaces
without concern for how the data is physically made available. This standardized, logical data interface is based on
existing standards to the greatest extent possible.

4.3.1 3.1. Standards-based Data Representation

The Common Information Model (CIM) is used for all power system models, which enables rapid exchange of power
system models across compliant applications and services. Using the set of standardized model queries provided by the
PowerGrid Models API, a GridAPPS-D application is able to scale seamlessly across different network models with
no modifications to the application code.

16 Chapter 4. GridAPPS-D Introduction

GridAPPS-D, Release 2021 05.0

4.3.2 3.2. Standards-based Data Interfaces

The GridAPPS-D Platform and GridAPPS-D APIs provide a standardized method for interfacing with power system
model data, real-time simulation data, historical data, and log data. Each of these APIs abstract the database specifics,
and enable simple queries through a set of standardized messages formatted as JSON strings.

4.3.3 3.3. Data Translation to Non-standardized Elements

CIM Hub and the Configuration File API allow conversion of the power system model data from the standards-based
CIM XML format used by the GridAPPS-D Platform to model formats used by other software packages, such as
GridLAB-D and OpenDSS. This model conversion process can be performed with a simple set of standardized API
calls.

4.3.4 3.4. Available Distribution Feeders

The Grid APPS-D platform comes pre-configured with a combination of IEEE Test Feeders, PNNL Taxanomoy feeders,
and other realistic synthetic models. Additional models and actual utility feeder data can be uploaded easily as CIM
XML files into the GridAPPS-D Platform, which can then be used for application testing and real-time simulation.

4.4 4. Real-Time Distribution Simulation

The GridAPPS-D Platform inlcudes a robust real-time distribution simulator with comparable capabilities to a Dis-
patcher Training Simulator. This environment enables application developers to test algorithms and application code
on both the standard realistic sythetic feeders pre-configured in the GridAPPS-D Platform download and any other
power system models that the user can upload through the CIM Hub package.

The distribution simulator is the source of data to the distribution system application developer enabling them to eval-
uate the performance of their application with ideal or realistic noisy data under different operating and performance
conditions.

The GridAPPS-D platform currently supports only quasi-static simulation (i.e. simulation of electromechanical / elec-
tromagnetic transients, variable microgrid island frequency, synchro-check relays, etc. are not supported currently).
These types of simulations can be performed with GridLAB-D outside of the the GridAPPS-D Platform and application
development environment.

4.4.1 4.1. Real-Time & Faster-than-Real-Time Simulation

Simulations can be run in two modes:

1) Real-time mode: one second of computer clock time corresponds to one second of simulation time. The
GridAPPS-D Platform runs the simulation in each time and publishes simulation data and sensor measurements
every three seconds.

2) Faster-than-real-time mode: The GridAPPS-D runs the simulation as fast as possible and does not wait for three
seconds of computer clock time to pass before it publishes the simulation data from the current time step. This
mode is very useful for creating historical training data sets for AI/ML applications.

4.4. 4. Real-Time Distribution Simulation 17

GridAPPS-D, Release 2021 05.0

4.4.2 4.2. Controllable Power System Equipment

All of the power system equipment can be controlled in real-time through the Simulation API, allowing applications
to open/close switches, dispatch DGs / DERs, adjust setpoints of rooftop PV, adjust regulator taps, and turn capacitor
banks on or off.

4.4.3 4.3. Noisy / Bad Data Injection & Communication Failures

The GridAPPS-D Platform supports the Sensor Simulator Service, which is able to inject noise, bad measurements, and
data packet losses into the simulation output. The frequency at which sensors publish can also be adjusted and aggre-
gated, allowing realistic representation of real sensors, such as AMI meters that publish data every 15 minutes, rather
than at each simulation time step. This allows the user to train and evaluate applications with realistic measurement for
meters and sensors, rather than “pure” data created by the power flow solver.

The GridAPPS-D Platform also supports simulation of communication failures through the Test Manager during which
data is not received from sensors, control commands are delivered to selected equipment, or both. This enables appli-
cation developers to test algorithm performance under realistic conditions, during which physical equipment might not
respond to control commands.

4.4.4 4.4. Reconfigurable Power System Topologies

The GridAPPS-D Platform supports simulation of both meshed and radial power system topologies, as well as re-
configuration of the power system network in real-time by opening / closing / tripping of various switching devices,
such as breakers, reclosers, sectionalizers, and fuses. These switches can be controlled by an application through the
Simulation API or through the GridAPPS-D Viz GUI

4.4.5 4.5. Real-Time Simulation Visualization

The GridAPPS-D Platform includes the Viz GUI application, which presents a simple graphic user interfaces with
some of the basic functionalities found in an Dispatcher Training Simulator, inlcuding a one-line diagram of the feeder,
colorized switch positions, outage locations, alarm messages, and customizable stripcharts of power flow, node voltage,
and tap position.

4.5 5. Using the GridAPPS-D Platform

GridAPPS-D currently runs in a Linux virtual machine (VM). Although it can be built from sources, the primary form
of distribution is as a set of Docker containers. Users can install the Docker infrastructure on their computer and then
download the Docker containers. Several platform usage scenarios are then feasible:

1. Start and run the application through its browser interface. Utilities could use the platform this way to evaluate
new applications, or to evaluate applications on their own circuits. The App Hosting Manager allows a user to
install and configure new applications to run in the platform, by modifying configuration files but without having
to write new code. GridAPPS-D will also be able to ingest any distribution circuit provided in CIM format.

2. Write scripted scenarios and responses using the Test Manager, and run those through GridAPPS-D. This mode
can be used for a more rigorous evaluation, and also for operator training.

3. Write a new application, using one of the open-source examples as a template. This mode should provide a faster
on-ramp for application developers to develop a standards-compliant product.

18 Chapter 4. GridAPPS-D Introduction

GridAPPS-D, Release 2021 05.0

4. DMS vendors can use the platform to develop and test their own standards-compliant interfaces. Any Grid APPS-
D code may be incorporated into a commercial product, pursuant to its BSD license terms. The goal is for an
application to be deployable from one platform to another, simply by moving the program file(s) and updating
local configuration files.

4.5. 5. Using the GridAPPS-D Platform 19

GridAPPS-D, Release 2021 05.0

20 Chapter 4. GridAPPS-D Introduction

CHAPTER
FIVE

GRIDAPPS-D ARCHITECTURE

5.1 1. GridAPPS-D Architecture

GridAPPS-D offers a standards-based, open-source platform that enables rapid integration of advanced applications
and services through a robust application programming interface (API).

The architecture of the development ecosystem is illustrated below.

woow 8 W

f
|
|
|
|
|
|
|
|

Users
System User Evaluator Operator Test Manager
External OMS GridAPPS-D ADMS Apps
Vendor DMS
External Vendor Hosted Visualizati JupyterLab
oste: isualization upyterLa
ADMSESZS S Other Sensor Gls SCADA AMI Meter Histori Advanced Application Notebooks
Data Interface Data \sterian Applications Simulation
" - Orientation
FLISR Visualization ‘ |
STOMP
DERMS Client ‘ | APl Usage
GridAPPS-D . Sensor . Device Protocol icati
i State Estimator ; Alarm Service . Data & Logs Application
ADMS Services Simulator Services wo Viewer ‘ | Development
- PowerGrid Configuration TCP/IP Network Device Service
GridAPPS-D API Model APl File AP Simulation API Logging API Timeseries AP APl API

Process

GridAPPS-D Core Services ‘ Manager

GridAPPS-D Platform
| —

Configuration
Manager

Simulation Services Application
Manager Manager Manager
Co-simulator =
(HELICS or FNCS) Services Application
“__Library _ -_Library _J

GridLab-D

GOSS Message Bus
Authentication and Authorization Security Layer

Logging
Manager

Data Managers

Static Data
(MysaL)

Network Models
(Blazegraph)

Real-time Data 8
Histortan Graph Model

{ProvEn / InfluxDB) (NetwerkX)

21

GridAPPS-D, Release 2021 05.0

5.2 2. GridAPPS-D User Roles

The GridAPPS-D platform contains several user roles with different permissions.
[[GET DESCRIPTION OF USER ROLES AND PERMISSION FROM TARA]]
e System
— This role is used by XXX to do XXX
— Permission inlcude
*
*
*
* Evaluator
— This role is used by XXX to do XXX
— Permission inlcude
*
*
*
* Operator
— This role is used by XXX to do
— Permission inlcude
*
*
*
* Test Manager
— This role is used by XXX to do
— Permission inlcude
*
*

*

22 Chapter 5. GridAPPS-D Architecture

GridAPPS-D, Release 2021 05.0

5.3 3. Integration with External Vendor Systems

External vendor systems are able to interface with Grid APPS-D compliant applications and services through two means.

The first is direct integration through the standards-based API and message bus. This enables products that comply
with the GridAPPS-D™ platform to * reduce utility time and cost to integrate new functionality * give utilities more
choice in technology providers * scale up or down for any size utility * expand market opportunities for developers and
vendors

The second method is through the standards-based services, such as the DNP3 service, IEEE 2030.5 service, etc. that
enable communication between Grid APPS-D compliant applications and external vendor systems through SCADA and
other control center protocols.

5.4 4. GridAPPS-D Applications

The GridAPPS-D platform and API enable rapid development of advanced power applications that are able to operate
in a real-time environment and interface with external software and systems. Multiple power applications have already
been developed on the platform, including

* Volt-Var Optimization (VVO)

¢ Fault Location Isolation and Service Restoration (FLISR)

* Distributed Energy Resource Dispatch and Management (DERMS)
* Solar Forecasting, Load Forecasting, etc.

* and more

Applications can be containerized in Docker for direct integration into the platform or interface through the APIL
Applications can be written in any programming language, but API libraries are currently available in only Python and
Java.

5.5 5. GridAPPS-D Services

The GridAPPS-D platform can host a multitude of services for processing both real-time simulation and control center
data. These services can be called by any application through the GridAPPS-D APIL

Some of the available services include
¢ State Estimator
* Sensor Simulator
e Alarm Service
* DNP3 Protocol Service
IEEE 2030.5 Protocol Service

5.3. 3. Integration with External Vendor Systems 23

GridAPPS-D, Release 2021 05.0

5.6 6. GridAPPS-D Application Programming Interface

GridAPPS-D offers a unique standards-based application programming interface (API) that will be the focus of the
lessons in this set of tutorials. The API enables any application, service, or external vendor product to interface with
each other, access control center data, run a real-time simulation, and issue equipment control commands.

GridAPPS-D has several APIs to serve different needs and objectives, inlcuding * Powergrid Models API — Allows
apps and services to access the power system model data * Configuration File API — Allows apps to set equipment
statuses and system conditions * Simulation API — Allows apps to start a real-time simulation and issue equipment
commands * Timeseries API — Allows apps to pull real-time and historical data * Logging API — Allows apps to
access logs and publish log messages

Additional APIs are currently under development to enable communication and control of field devices, as well as
cyber-physical network co-simulation.

5.7 7. GOSS Message Bus

One of the unique features of GridAPPS-D is the GOSS Message Bus, which enables integration and communication
between applications, services, and external software on a publish-subscribe basis.

The GridAPPS-D platform publishes SCADA and simulation data, alarms, and other real-time data. Applications
subscribe to the types of messages relevant to their objectives and publish equipment commands and control settings.

5.8 8. GridAPPS-D Core Services

“Under the hood” of the Grid APPS-D platform are the core services and managers.

An application developer should not need a detailed understanding of the core services, as all interaction is performed
through the various APIs, which will be dicussed in detail in the upcoming tutorial lessons.

The core services provide the key functionality offered by the Grid APPS-D platform, inlcuding database access, pro-
cessing API calls, handling equipment commands, and running simulations.

Some of the core services included in the Grid APPS-D platform are * Platform Manager — Coordinates all of the other
managers * Process Manager — Coordinates platform component interactions * Application Manager — Manages ap-
plication registration, execution, and status reporting * Configuration Manager — Manages the setup and configuration
of real-time simulations * Simulation Manager — Allows users and apps to create, start, stop, and pause co-simulations
* Data Manager — Coordinates the integrated repository of model, timeseries data, and metadata * Model Manager
— Loads and checks CIM-based power system models * Logging Manager — Supports logging for application devel-
opment and execution * Services Manager — Coordinates all services available for users and apps * Test Manager —
Enables creation of simulation events, faults, and network outages

24 Chapter 5. GridAPPS-D Architecture

GridAPPS-D, Release 2021 05.0

5.9 9. Co-Simulation Framework

The co-simulation framework serves as the simulation context for the rest of GridAPPS-D. When a simulation is re-
quested through the Grid APPS-D plaform the simulation manager instantiates a FNCS or HELICS co-simulation fed-
eration consisting of two applications. The first application is a powerflow simulator which can be either GridLAB-D
or OpenDSS that simulates real world distribution feeder or feeders. The second is a custom application that serves
as bridge between the FNCS/HELICS message bus and the GOSS message bus. The data that travels between the
co-simulation federation and the rest of the platform are SCADA measurement, SCADA control, and simulation status
and control messages.The bridge application subscribes to the simulation input topic to recieve any SCADA control,
simulation control, and simulation event messages. The bridge forwards SCADA control commands and simulation
events like faults and outages to the powerflow simulator. The bridge publishes SCADA measurements from the power-
flow simulator on a simulation output topic that Grid APPS-D applications and other parts of the Grid APPS-D platform
subscribe to.

5.10 10. Database Structures

Default installation of GridAPPS-D comes with following data stores:

e MySQL: It is used to store log data from platform, applications and services. For details, please see Logging
API, which is covered in detail in Lesson 2.7.

* Blazegraph: It is used to store power grid model data. The data contains equipments, properties and their initial
measurement values. It is a triplestore that supports complex graph representation and class structure for CIM
standard data model.

e InfluxDB: InfluxDB is a time series data store and is used to store simulation output, simulation input, weather
and load data. It also store output from services line sensor service and alarms service. For the purposes of the
GridAPPS-D project, InfluxDB is managed by Proven. Proven is a database software suite supporting disclosure,
collection, and management of modeling and simulation data.

For the purpose of developing applications, the data stores used should be transparent to the application as long the
data model and standardized API is used.

Return to Top

5.9. 9. Co-Simulation Framework 25

GridAPPS-D, Release 2021 05.0

26 Chapter 5. GridAPPS-D Architecture

CHAPTER
SIX

GRIDAPPS-D PYTHON LIBRARY

6.1 Getting Started

Before running any of the sample routines in this tutorial, it is first necessary to start the GridAPPS-D Platform and
establish a connection to this notebook so that we can start passing calls to the API.

Open the Ubuntu terminal and start the GridAPPS-D Platform if it is not running already:
cd gridappsd-docker

~/gridappsd-docker$. /run.sh -t develop

Once containers are running,

gridappsd @[container]:/gridappsd$. /run-gridappsd.sh

6.2 1. A First Course in GridAPPSD-Python

Grid APPSD-Python is a Python library that can wrap API calls and pass them to the various Grid APPS-D APIs through
the GOSS Message Bus

The library has numerous shortcuts to help you develop applications faster and interface them with other applications,
services, and GridAPPS-D compatible software packages.

27

GridAPPS-D, Release 2021_05.0

Return to Top

6.3 2. Building Blocks of an Application

This section is going to provide an overview of some of the key building blocks of a Grid APPS-D application.

6.3.1 2.1. Import Required Python Libraries

The first step is to import the required libraries.

Below is a list of some of the additional libraries that you may need to import.

You may not need all of these additional libraries, depending on the needs of your application
* argparse — This is the recommended command-line parsing module in Python.(Online Documentation)
* json — Encoder and decoder for JavaScript Object Notation (JSON). (Online Documentation)
¢ logging — This module defines classes and functions for event logging. (Online Documentation

* sys — Python module for system specific parameters. (Online Documentation)

28 Chapter 6. GridAPPS-D Python Library

https://docs.python.org/3/howto/argparse.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/sys.html

[1:

[1:

GridAPPS-D, Release 2021 05.0

¢ time — Time access and conversions. (Online Documentation)
* pytz — Library to enable resolution of cross-platform time zones and ambiguous times. (Online Documentation

* stomp — Python client for accessing messaging servers using the Simple Text Oriented Messaging Protocol
(STOMP). (Online Documentation)

import argparse
import json
import logging
import sys
import time
import pytz
import stomp

Return to Top

6.3.2 2.2. Import Required GridAPPS-D Libraries

The GridAPPS-Python API contains several libraries, which are used to query for information, subscribe to measure-
ments, and publish commands to the GOSS message bus. These inlcude

GridAPPSD — This is primary library that contains numerous methods and tools that will be dicussed in detail in the
subsequent lessons.

utils — A set of utilities to assist with common commands, inlcuding
Function Call |

Usage I

utils.validate_gridappsd_uri() |

Checks if GridAPPS-D is hosted on the correct port

utils.get_gridappsd_address() |

Returns the platform address such that response can be passed directly to a socket or the STOMP library
utils.get_gridappsd_user() |

Returns the login username

utils.get_gridappsd_pass() |

Returns the login password

utils.get_gridappsd_application_id() |

Only applicable if the environment variable ‘GRIDAPPSD_APPLICATION_ID’ has been set
utils.get_gridappsd_simulation_id()_ |

retrieves the simulation id from the environment.

from gridappsd import GridAPPSD, utils

6.3. 2. Building Blocks of an Application 29

https://docs.python.org/3/library/time.html
https://pypi.org/project/pytz/
https://pypi.org/project/stomp.py/

[1:

[1:

[1:

[1:

GridAPPS-D, Release 2021 05.0

6.3.3 2.3. Establish a Connection to the GridAPPS-D Platform

The next step is to establish a connection with the Grid APPS-D platform so that API calls can be passed and processed.

This can be done by 1) manually specifying the connection and port or 2) using the GridAPPS-D utils to automatically
determine the port

Option 1: Manually specify connection parameters

By default, the GridAPPS-D API communicates with the platform on port 61613.

gapps = GridAPPSD("('localhost', 61613)", username='system', password='manager')

Option 2: Use GridAPPS-D utils to determine connection

The GridAPPS-D utils include several functions to automatically determine the location of the platform and security
credentials for passing API commands

gapps = GridAPPSD(address=utils.get_gridappsd_address(),
username=utils.get_gridappsd_user(), password=utils.get_gridappsd_pass())

Return to Top

6.3.4 2.4. Pass a Simple API Call

There are three generic API call routines:
* send(self, topic, message) —
* get_response(self, topic, message) —
* subscribe(self, topic, callback) —

For this example, we will use a very short query to request the MRIDs of the models available in the GridAPPS-D
Platform. We will explain how to make various kinds of queries in the upcoming lessons on how to use each APL

The first step is to define the topic, which specifies the channel on which to communicate with the API. The concept
of the GridAPPS-D Topic will be introduced in the next lesson. The specific topic definitions and their purposes will
be discussed in greater detail in the lessons on each GridAPPS-D API.

topic = "goss.gridappsd.process.request.data.powergridmodel"”

Next, we need to create the message the will be passed. The message must be a valid Python Dictionary or JSON-
formated string. The way a message is created, structured, formatted, and parsed is discussed in detail in

If it is a short query, we can write it as a single line.

message = {"requestType": "QUERY_MODEL_NAMES", "resultFormat": "JSON"}

If it is a long query, we can break up the lines of the python dictionary object to improve readability:

message = { "keyl": "valuel", "key2": "value2" }

30 Chapter 6. GridAPPS-D Python Library

GridAPPS-D, Release 2021 05.0

[]: message = {
"requestType": "QUERY_MODEL_NAMES",
"resultFormat": "JSON"

The Grid APPSD-Python Library then wraps that string and passes it as a message to the API through the GOSS
Message Bus.

[1: gapps.get_response(topic, message)

Return to Top

6.3. 2. Building Blocks of an Application 31

GridAPPS-D, Release 2021 05.0

32 Chapter 6. GridAPPS-D Python Library

[1:

CHAPTER
SEVEN

GRIDAPPS-D APPLICATION STRUCTURE

7.1 1. Application Structure

2) Start a simulation in the GridAPPS-D Viz:

The Simulation API calls covered in this lesson need to be passed to an active simulation. For the purposes of this
tutorial, we will use the GridAPPS-D Viz at localhost:8080 to start a simulation of the IEEE 123 Node model with a
3600 sec simulation time.

The steps for starting a simulation were covered in Lesson 2.5, Section 3.

After starting the simulation, paste the simulation_id into the code block below by clicking on the simulation_id. This
will automatically copy the simulation_id to your computer’s clipboard.

GridAPPS-D relea

Simulation ID 1768931822 Simulation

Copied to clipboa’d

When your application is containerized in Docker and registered with the GridAPPS-D Platform using the docker-
compose file, the simulation_id and feeder model mRID as passed as part of the application start call. For this notebook,
that information needs to be copied and pasted into the first code block below.

Import GridAPPSD-Python Library:
from gridappsd import GridAPPSD

Paste Simulation ID into this variable:
viz_simulation_id = "1093527122"

Simulation running on IEEE 123 node model:
model mrid = "_C1C3E687-6FFD-C753-582B-632A27E28507"

Establish connection to GridAPPS-D Platform:

gapps = GridAPPSD(viz_simulation_id, "('localhost', 61613)", username='system', password=
< 'manager"')

assert gapps.connected

33

http://localhost:8080/
Lesson%202.5.%20Simulation%20API%20-%20Running%20Simulations.ipynb#3.2.1.-%22power_system_config%22:

[1:

GridAPPS-D, Release 2021 05.0

Set environment variables - when developing, put environment variable in ~/.bashrc.
—file or export in command line

export GRIDAPPSD_USER=system

export GRIDAPPSD_PASS=manager

import os # Set username a
os.environ['GRIDAPPSD_USER'] = 'tutorial_user'
os.environ['GRIDAPPSD_PASS'] = '12345!"

Connect to GridAPPS-D Platform
gapps = GridAPPSD(viz_simulation_id)
assert gapps.connected

7.2 2. Querying for the Power System Model

The first portion of a Grid APPS-D application is series of queries to the PowerGrid Models API to obtain information
about the power system model.

Because GridAPPS-D applications are designed to be portable across numerous power system models without any
code modification, the application must query the Blazegraph database and create a set of local variables that contain
the information needed by the app to run its internal code.

An application will query for the various pieces of power system equipment relevant to its objective (e.g. a VVO app
will be interested in regulators and capacitors, while a FLISR app will be interested in switches and reclosers present in
the model). The query will typically include requests for information about the names, location, mRIDS, and electrical
parameters for the various pieces of equipment needed by the application..

7.2.1 2.1. Information flow

The figure below shows the information flow involved in making a query for the power system model.

The query is sent using gapps.get_response(topic, message) on a queue channel (explained in API Communi-
cation Channels) with a response expected back from the platform within the specified timeout period.

34 Chapter 7. GridAPPS-D Application Structure

3.1--Lesson-3.1--API-Communication-Channels.ipynb
3.1--Lesson-3.1--API-Communication-Channels.ipynb

[1:

GridAPPS-D, Release 2021_05.0

I

System User Evaluator Operator Test Manager

Grid APPS-D ADMS App

\ Query for Power System Model I

| W Query for Model Measurement mRIDs
Query for Weather Data

Configure Simulation / Export Model

External
Vendor DMS

OMS ‘
External Vendor
ADMS Systems

SCADA
Interface

AMI Me ter
Data

Other Sensor
Data

GIS ‘

‘ Historian

Process Measurements / App Core Algorithm

Subscribe to Simulation

Publish Equipment Control Commands

Grid APPS-D Sensor

State Estimator Device Protocol
ADMS Services Simulator

Alarm Service h
Services

Query for Historical & Timeseries Data

Subscribe & Publish Log Messages

PowerGrid
Models API

Configuration
File API

TCP/IP Network Device Service

GridAPPS-D API API API

Simulation API Logging API Timeseries APl

GOSS Message Bus

Authentication and Authorization Security Layer

Manager Manager Manager Manager Data Managers

GridAPPS-D Core Services Process Configuration Simulation Services ‘ A’;\on;:\:aagtleorn ‘ Logging

Manager

Co-simulator
(HELICS or FNCS)

ervi
_Library -

Network Models
(Blazegraph)

Static Data
(MysQl)

GridLab-D

Real-time Data & [*
Historian
(ProvEn / InfluxDEB)

Graph Model
(NetworkX)

Application passes query to GridAPPS-D Platform

First, the application creates a query message for requesting information about the desired power system components
in the format of a JSON string or equivalant Python dictionary object. The syntax of this message is explained in detail
in Using the PowerGrid Models API.

The application then passes the query through the PowerGrid Models API to the Grid APPS-D Platform, which publishes
it to a queue channel on the GOSS Message Bus. If the app is authenticated and authorized to pass queries, the query
message is delivered to the data managers, which obtain the desired information from the Blazegraph Database.

GridAPPS-D Platform responds to Application query

The data managers then publish the response from the Blazegraph Database to the appropriate queue channel. The
PowerGrid Models API then returns the desired information back to the application as a JSON message or equivalant
Python dictionary object.

7.2.2 2.2. Sample App code

Below is a sample query of how the application will use the PowerGrid Models API to query for the details associated
for all the switches in the feeder.

from gridappsd import topics as t

message = {
"modelId": model_mrid,
"requestType": "QUERY_OBJECT_DICT",

(continues on next page)

7.2. 2. Querying for the Power System Model 35

3.3--Lesson-3.3--Using-the-PowerGrid-Models-API.ipynb

GridAPPS-D, Release 2021 05.0

(continued from previous page)

"resultFormat": "JSON",
"objectType": "LoadBreakSwitch"

}

response_obj = gapps.get_response(t.REQUEST_POWERGRID_DATA, message)
switch_dict = response_obj["data"]

Filter to get mRID for switch SW2:
for index in switch_dict:
if index["IdentifiedObject.name"] == 'sw2':
sw_mrid = index["IdentifiedObject.mRID"]

print(switch_dict[0]) # Print dictionary for first switch

print('mRID of sw2 is ',sw_mrid)

7.3 3. Querying for Measurement mRIDs

The next portion of a GridAPPS-D application is series of queries to the PowerGrid Models API to obtain information
about the measurements associated with various pieces of equipment the application is interested in. Due to structure
of the Common Information Model (introduced in Lesson 2.6), there exist a separate set of objects associated with
the positive-neutral-voltage (PNV), volt-ampere (VA), and position measurements (POS) for each line, transformer,
switch, etc.

Because GridAPPS-D applications are designed to be portable across numerous power system models without any
code modification, the application must query the Blazegraph Database and create a set of local variables that contain
the unique mRIDS of each measurement needed by the app to run its internal code. In a subsequent step, the app will
use these measurement mRIDs to subscribe to the live streaming data issued by the simulation.

7.3.1 3.1. Information Flow

The figure below shows the information flow involved in making a query for the power system model.

The query is sent using gapps.get_response(topic, message) onaqueue channel (explained in Lesson 3.1) with
a response expected back from the platform within the specified timeout period.

36 Chapter 7. GridAPPS-D Application Structure

2.6%20--%20Lesson%202.6%20--%20Common%20Information%20Model.ipynb
3.1%20--%20Lesson%203.1%20--%20API%20Communication%20Channels.ipynb

[1:

GridAPPS-D, Release 2021_05.0

@ @ 8 W

System User Evaluator Operator Test Manager

GridAPPS-D ADMS App
Extemal Query for Power System Model
Vendor DMS oms ‘ = L
~ \ Query for Model Measurement mRIDs I
Query for Weather Data
Configure Simulation / Export Model

External Vendor
ADMS Systems

SCADA
Interface

AMI Me ter
Data

Other Sensor
Data

GIS ‘

‘ Historian

Process Measurements / App Core Algorithm

Subscribe to Simulation

Publish Equipment Control Commands

GridAPPS-D Sensor

State Estimator Device Protocol

Alarm Service Query for Historical & Timeseries Data

ADMS Services Simulator Services
Subscribe & Publish Log Messages
- PowerGrid Configuration - - . . . TCP/IP Network Device Service
GridAPPS-D API Models API File API Simulation API Logging APl Timeseries API APl APl

GOSS Message Bus

Authentication and Authorization Security Layer

Data Managers

Grid APPS-D Core Services Process Configuration Simulation Services ‘ A’;\Jd;:\r\]?‘;;\:;n ‘ Logging

Manager Manager Manager Manager Manager

Co-simulator
(HELICS or FNCS)

Network Models
(Blazegraph)

Static Data

(MysQL)

<
Graph Model

(NetworkX)

Historian
(ProvEn / InfluxDB)

[Real-time Data &

GridAPPS-D Platform

—_—e—e—— —_— ,_— .- .- .- .- .- - {M— ,—_—- ,_.— ,_.-—- ,_.— ,—,—_—,—_——_— —_——_——_———_—

The figure below shows the information flow involved in making a query for the power system model.
Application passes query to GridAPPS-D Platform

First, the application creates a query message for requesting information about the desired power system components
in the format of a JSON string or equivalant Python dictionary object. The syntax of this message is explained in detail
in Lesson 3.3.

The application then passes the query through the PowerGrid Models API to the Grid APPS-D Platform, which publishes
it to a queue channel on the GOSS Message Bus. If the app is authenticated and authorized to pass queries, the query
message is delivered to the data managers, which obtain the desired information from the Blazegraph Database.

GridAPPS-D Platform responds to Application query

The data managers then publish the response from the Blazegraph Database to the appropriate queue channel. The
PowerGrid Models API then returns the desired information back to the application as a JSON message or equivalant
Python dictionary object.

Below is a sample query of how the application will use the PowerGrid Models API to query for the measurement
mRIDs of all switches in the power system model

message = {
"modelId": model_mrid,
"requestType": "QUERY_OBJECT_MEASUREMENTS",
"resultFormat": "JSON",
"objectType": "LoadBreakSwitch"

(continues on next page)

7.3. 3. Querying for Measurement mRIDs 37

3.3%20--%20Lesson%203.3%20--%20Using%20the%20PowerGrid%20Models%20API.ipynb

GridAPPS-D, Release 2021 05.0

(continued from previous page)

response_obj = gapps.get_response(t.REQUEST_POWERGRID_DATA, message) # Pass query to.
—PowerGrid Models API
measurements_obj = response_obj["data"]

global Pos_obj # Define global python dictionary of position measurements
Pos_obj = [k for k in measurements_obj if k['type'] == 'Pos'] # Filter measurements to.

—just switch positions

print(Pos_obj[0]) # Print switch position measurement mRID for first switch

7.4 4. Querying for Weather Data

The next portion of a GridAPPS-D application is series of queries to the Timeseries API to obtain information about
the weather data for the current time, including irradiation, temperature, etc. This information can be used for solar
forecasting, load forecasting, etc.

Because GridAPPS-D applications are designed to be portable across numerous power system models without any
code modification, the application must query the Timeseries Influx Database and create a set of local variables that
contain the weather data needed by the app to run its internal code.

7.4.1 4.1. Information Flow

The figure below shows the information flow involved in making a query for the power system model.

The query is sent using gapps.get_response(topic, message) on the Timeseries queue channel (explained in
Lesson 3.1) with a response expected back from the platform within the specified timeout period.

38 Chapter 7. GridAPPS-D Application Structure

3.1%20--%20Lesson%203.1%20--%20API%20Communication%20Channels.ipynb

[1:

GridAPPS-D, Release 2021_05.0

@ W@ e

System User Evaluator Operator Test Manager

GridAPPS-D ADMS App

Extemal Query for Power System Model
Vendor DMS oms Z L
External Vendor Query for Model Measurement mRIDs
ADMS Systems uery for Weather Data
Sy Other Sensor s SCADA AMI Meter Histord _'l/\ Query]
Data Interface Data istorian Configure Simulation / Export Model
Process Measurements / App Core Algorithm
Subscribe to Simulation
GridAPPS-D Publish Equipment Control Commands
il A . Sensor . Device Protocol PP " -
ADMS Services State Estimator Simulator Alarm Service Services Query for Historical & Timeseries Data
Subscribe & Publish Log Messages
. PowerGrid Configuration - . N . . TCP/IP Network Device Service
GridAPPS-D API Models API File API Simulation API Logging API Timeseries APl API API
GOSS Message Bus
Data Managers

Manager Manager Manager Manager Manager Manager

Co-simulator
(HELICS or FNCS)

ervi
~_Library -

Static Data
(MysQL)

Network Models
(Blazegraph)

GridLab-D

OpenDSS

Real-time Data &
Historian
(ProvEn / InfluxDB) |

Graph Model
(NetworkX)

| GridAPPS-D Core Services Process Configuration Simulation Services ‘ Application ‘ Logging

GridAPPS-D Platform
| N—

Application passes query to GridAPPS-D Platform

First, the application creates a query message for requesting information about the desired power system components
in the format of a JSON string or equivalant Python dictionary object. The syntax of this message is explained in detail
in Lesson 3.7.

The application then passes the query through the Timeseries API to the Grid APPS-D Platform, which publishes it
to a queue channel on the GOSS Message Bus. If the app is authenticated and authorized to pass queries, the query
message is delivered to the Data Managers, which obtain the desired information from the Timeseries Influx Database.

GridAPPS-D Platform responds to Application query

The Data Managers then publish the response from the Timeseries Influx Database to the appropriate queue channel.
The Timeseries API then returns the desired information back to the application as a JSON message or equivalant
Python dictionary object.

7.4.2 4.2. Sample App Code

Below is a sample query to the Timeseries API requesting all weather data between a certain startTime and endTime
(given in unix absolute time). The application can then use that weather data to feed its internal forecasting algorithm.

Use queryFilter of "startTime" and "endTime"
message = {
"queryMeasurement": "weather",
"queryFilter":{"startTime":"1357048800000000",
"endTime":"1357048860000000"},

(continues on next page)

7.4. 4. Querying for Weather Data 39

3.7%20--%20Lesson%203.7%20--%20Using%20the%20Timeseries%20API.ipynb

GridAPPS-D, Release 2021 05.0

(continued from previous page)

"responseFormat" :"JSON"

}

response_obj = gapps.get_response(t.TIMESERIES, message) # Pass query to Timeseries API
weather_obj = response_obj["data"]

print (weather_obj[1]) # Print first line of weather data

7.5 5. Configuring a Parallel Simulation

Some applications may choose to run parallel simulations (similar to a digital twin), either within the GridAPPS-D
platform or by exporting the model to OpenDSS, GridLAB-D, etc. This is accomplished through one or more queries
to the Configuration File API to create a simulation configuration file and/or exported power system model.

The simulation configuration file contains all the necessary info to create a new simulation, including the power sys-
tem model, date/time, and variations from the default basecase (i.e. re-dispatched DERs and switches that have been
opened/closed).

The exported power system model is the entire model as a set of GLM or DSS that can be saved to an external file and
then solved with a different power flow solver outside of the GridAPPS-D Platform.

7.5.1 5.1. Information Flow

The figure below shows the information flow involved in making a query for the power system model.

The query is sent using gapps.get_response(topic, message) on the Configuration File queue channel (ex-
plained in Lesson 3.1) with a response expected back from the platform within the specified timeout period.

40 Chapter 7. GridAPPS-D Application Structure

3.1%20--%20Lesson%203.1%20--%20API%20Communication%20Channels.ipynb

GridAPPS-D, Release 2021_05.0

@ e W

System User Evaluator Operator Test Manager

GridAPPS-D ADMS App

Extemal Query for Power System Model
Vendor DMS oms
External Vendor Query for Model Measurement mRIDs
ADMS Systems Query for Weather Data
Other Sensor GlIs SCADA AMI Meter Histori = =
Data Interface Data istorian \ Configure Simulation / Export Model I

|V Process Measurements / App Core Algorithm

Subscribe to Simulation

GridAPPS-D Publish Equipment Control Commands

| - - Sensor . Device Protocol PR - .

ADMS Services State Estimator Simulator Alarm Service Services Query for Historical & Timeseries Data
Subscribe & Publish Log Messages

- PowerGrid Configuration - . N . . TCP/IP Network Device Service
GridAPPS-D API Models API File API Simulation API Logging API Timeseries API API APl
f S—
0 d o 0
- . - Process Configuration Simulation Services Application Logging
GridAPPS-D Core Services Manager ‘ Manager ‘ Manager Manager ‘ Manager Manager Data Managers

Co-simulator
(HELICS or FNCS)

B

“Services i ATJFIicat 1

— Library — Library Static Data Network Models
(MysQL) (Blazegraph)

Real-time Data & [*
Historian
(ProvEn / InfluxDB,

Graph Model
(NetworkX)

GridAPPS-D Platform
| I—

Application passes query to GridAPPS-D Platform

First, the application creates a query message for requesting information about the desired power system configuration
in the format of a JSON string or equivalant Python dictionary object. The syntax of this message is explained in detail
in Using the Configuration File API

The application then passes the query through the Configuration File API to the Grid APPS-D Platform, which publishes
it to a queue channel on the GOSS Message Bus. If the app is authenticated and authorized to pass queries, the query
message is delivered to the Configuration Manager.

GridAPPS-D Platform responds to Application query

The Configuration Manager obtains the CIM XML file for the desired power system model and then converts it to the
desired output format with all of the requested changes to the model. The Configuration File API then returns the
desired information back to the application as a JSON message (for Y-Bus or partial models) or export the files to the
directory specified in the

7.5. 5. Configuring a Parallel Simulation 41

3.4--Lesson-3.4--Using-the-Configuration-File-API.ipynb

[1:

GridAPPS-D, Release 2021 05.0

7.5.2 5.2. Sample App Code

Below is a sample query showing how an application would make a query through the Configuration File API to change
all loads to constant current loads, convert the power system model to a set of OpenDSS files, and export them to the
directory /tmp/dsssimulation.

topic = "goss.gridappsd.process.request.config"

message = {
"configurationType": "DSS All",
"parameters": {
"directory": "/tmp/dsssimulation/",
"model_id": model_mrid,
"simulation_id": "12345678",
"simulation_name": "ieeel3",
"simulation_start_time": "1518958800",
"simulation_duration": "60",
"simulation_broker_host": "localhost",
"simulation_broker_port": "61616",
"schedule_name": "ieeezipload",
"load_scaling_factor": "1.0",
"z_fraction": "0.0",
"i_fraction": "1.0",
"p_fraction": "0.0",
"solver_method": "NR" }
}

gapps.get_response(topic, message)

7.6 6. Processing Measurements & App Core Algorithm

The next portion of a GridAPPS-D application is the measurement processing and core algorithm section. This section
is built as either a class or function definition with prescribed arguments. Each has its advantages and disadvantages:

* The function-based approach is simpler and easier to implement. However, any parameters obtained from other
APIs or methods to be used inside the function currently need to be defined as global variables.

¢ The class-based approach is more complex, but also more powerful. It provides greater flexibility in creating
additional methods, arguments, etc.

7.6.1 6.1 Information Flow

This portion of the application does not communicate directly with the GridAPPS-D platform.

Instead, the next part of the GridAPPS-D application (Subscribing to Simulation Uuptut) delivers the simulated SCADA
measurement data to the core algorithm function / class definition. The core algorithm processes the data to extract the
desired measurements and run its optimization / control agorithm.

42 Chapter 7. GridAPPS-D Application Structure

GridAPPS-D, Release 2021_05.0

@ @ 8

System User Evaluator Operator Test Manager

GridAPPS-D ADMS App

Extemnal Query for Power System Model
Vendor DMS oms ‘ o !
External Vendor Query for Model Measurement mRIDs
ADMS Systems Query for Weather Data
Other Sensor Gls SCADA AMI Meter Histori
Data Interface Data istorian Configure Simulation / Export Model
I Process Measurements / App Core Algorithm I
Subscribe to Simulation
GridAPPS-D Publish Equipment Control Commands
Tl - - Sensor . Device Protocol PP n -
ADMS Services State Estimator Simulator Alarm Service Services Query for Historical & Timeseries Data
Subscribe & Publish Log Messages
- PowerGrid Configuration - - . - . TCP/IP Network Device Service
GridAPPS-D API Models API File API Simulation API Logging APl Timeseries API APl APl
[GOSS Message Bus
Authentication and Authorization Security Layer
- . - Process Configuration Simulation Services Application Logging
GridAPPS-D Core Services Manager ‘ Manager ‘ Manager Manager ‘ Manager Manager Data Managers

Co-simulator
(HELICS or FNCS)

Static Data
(MysaL)

Network Models
GridLab-D (Blazegraph) J

OpenDSS

Real-time Data &
Historian
[(ProvEn / InfluxDB) |

Graph Model
(NetworkX)

GridAPPS-D Platform

—_ e M — M — — —— ——— ————— ——— —— ———

No message from core algorithm to GridAPPS-D Platform
The core algorithm does not send any API messages to the platform
No response to core algorithm from GridAPPS-D Platform

The core algorithm receives its measurement data and other imputs from the subscription object defined next, rather
than directly from the Grid APPS-D platform.

7.6.2 6.2. Sample App Code

Below is a very simple core algorithm that determines the number of open switches in the model and prints the result
for each simulation timestep. The syntax of the function / class definition is described in detail in

[1: def demoSubscriptionl(header, message):
Extract time and measurement values from message
timestamp = message['message"]["timestamp"]
meas_value = message[''message"]["measurements"]

meas_mrid = list(meas_value.keys()) #obtain list of all mrid from message

Filter to measurements with value of zero
open_switches = []
for index in Pos_obj:
if index["measid"] in meas_value:
mrid = index["measid"]
(continues on next page)

7.6. 6. Processing Measurements & App Core Algorithm 43

GridAPPS-D, Release 2021 05.0

(continued from previous page)

power = meas_value[mrid]
if power["value"] == 0:
open_switches.append(index["egname"])

Print message to command line
print("............)
print("Number of open switches at time", timestamp, ' is ', len(set(open_switches)))

7.7 7. Subscribing to Simulation Output

The next portion of a GridAPPS-D application is series of queries to the Timeseries API to obtain information about
the weather data for the current time, including irradiation, temperature, etc. This information can be used for solar
forecasting, load forecasting, etc.

Because GridAPPS-D applications are designed to be portable across numerous power system models without any
code modification, the application must query the Timeseries Influx Database and create a set of local variables that
contain the weather data needed by the app to run its internal code.

7.7.1 7.1. Information Flow

The figure below shows the information flow involved in subscribing to the simulation output.

The subscription request is sent using gapps . subscribe(topic, class/function object) on the specific Sim-
ulation topic channel (explained in API Communication Channels). No immediate response is expected back from
the platform. However, after the next simulation timestep, the Platform will continue to deliver a complete set of
measurements back to the application for each timestep until the end of the simulation.

44 Chapter 7. GridAPPS-D Application Structure

3.1%20--%20Lesson%203.1%20--%20API%20Communication%20Channels.ipynb

[1:

GridAPPS-D, Release 2021_05.0

LR T

System User Evaluator Operator Test Manager

GridAPPS-D ADMS App

External Query for Power System Model
Vendor DMS ’ oms ‘ z L
External Vendor Query for Model Measurement mRIDs
ADMS Systems Query for Weather Data
Other Sensor SCADA AMI Me ter - N
Data GIS Interface Data Historian Configure Simulation / Export Model
Process Measurements / App Core Algorithm
Subscribe to Simulation I
GridAPPS-D Publish Equipment Control Commands
ri H . Sensor - Device Protocol P n)
ADMS Services State Estimator Simulator Alarm Service Services Query for Historical & Timeseries Data
Subscribe & Publish Log Messages
g PowerGrid Configuration . N N . . TCP/IP Network Device Service
GridAPPS-D API Models API File API Simulation APl Logging APl Timeseries API APl API

[GOSS Message Bus

Authentication and Authorization Security Layer

Manager Manager Data Managers

GridAPPS-D Core Services Process Configuration ‘ Simulation Services ‘ A’Rallpa\r\‘c:;;orn ‘ Logging

Manager Manager

Co-simulator
(HELICS or FNCS)

GridLab-D

Manager

ervi
‘_Library -

Static Data
(MysQlL)

Network Models
(Blazegraph)

OpenDSS

Real-time Data &
Historian

’ Graph Model
(ProvEn / InfluxDB)

(NetworkX)

GridAPPS-D Platform

—_ - M — M — — ———————— — e — o — g

Application passes subscription request to GridAPPS-D Platform

The subscription request is perfromed by passing the app core algorithm function / class definition to the gapps.
subscribe method. The application then passes the subscription request through the Simulation API to the topic
channel for the particular simulation on the GOSS Message Bus. If the application is authorized to access simulation
output, the subscription request is delivered to the Simulation Manager.

GridAPPS-D Platform delivers published simulation output to Application

Unlike the previous queries made to the various databases, the GridAPPS-D Platform does not provide any immediate
response back to the application. Instead, the Simulation Manager will start delivering measurement data back to
the application through the Simulation API at each subsequent timestep until the simulation ends or the application
unsubscribes. The measurement data is then passed to the core algorithm class / function, where it is processed and
used to run the app’s optimization / control algorithms.

7.7.2 7.2. Sample App Code

Below is an example of how an application subscribes to the Grid APPS-D simulation output using the function or class
definition created as part of the Measurement Processing / App Core

from gridappsd.topics import simulation_output_topic
output_topic = simulation_output_topic(viz_simulation_id)

gapps.subscribe(output_topic, demoSubscriptionl)

7.7. 7. Subscribing to Simulation Output 45

GridAPPS-D, Release 2021_05.0

7.8 8. Publishing Equipment Commands

The next portion of a GridAPPS-D App is publsihing equipment control commands based on the optimization results
or objectives of the app algorithm.

Depending on the preference of the developer, this portion can be a separate function definition, or included as part of
the main class definition as part of the Measurement Processing / App Core class definition described earlier.

7.8.1 8.1. Information Flow

The figure below outlines information flow involved in publishing equipment commands to the simulation input.

Unlike the various queries to the databases in the app sections earlier, equipment control commands are passed to the
GridAPPS-D API using the gapps.send(topic, message) method. No response is expected from the GridAPPS-D
platform.

If the application desires to verify that the equipment control command was received and implemented, it needs to do
so by 1) checking for changes in the associated measurements at the next timestep and/or 2) querying the Timeseries
Database for historical simulation data associated with the equipment control command.

@ @ e

System User Evaluator Operator Test Manager

Grid APPS-D ADMS App

Extemal Query for Power System Model
Vendor DMS ’ oms 2 ¥
External Vendor Query for Model Measurement mRIDs
ADMS Systems Query for Weather Data
Other Sensor Gis SCADA AMI Meter Histori
Data Interface Data Istorian Configure Simulation / Export Model
Process Measurements / App Core Algorithm
Subscribe to Simulation
GridAPPS-D Publish Equipment Control Commands I
Tl H . Sensor . Device Protocol — n ry
ADMS Services State Estimator Simulator Alarm Service Services Query for Historical & Timeseries Data
Subscribe & Publish Log Messages
. PowerGrid Configuration TCP/IP Network Device Service
GridAPPS-D API Models API File API Simulation API Logging API Timeseries API APl APl

GOSS Message Bus
Authentication and Authorization Security Layer
- L . Process Configuration Simulation Services Application Logging
GridAPPS-D Core Services ‘ Manager Manager Data Managers

Co-simulator
(HELICS or FNCS)

Application

Services f
—_Library

~_Library - Static Data

(MysQL)

Network Models
(Blazegraph)

Gridlab-D

Real-time Data & [*

[Historian
(ProvEn / InfluxDB)

Graph Model
(NetworkX)

| Manager Manager Manager Manager

GridAPPS-D Platform

_ e — — — —— ——— —— —— —— — — — — — — — — —

Application sends difference message to GridAPPS-D Platform

First, the application creates a difference message containing the current and desired future control point / state of
the particular piece of power system equipment to be controlled. The difference message is a JSON string or equiv-
alant Python dictionary object. The syntax of a difference message is explained in detail in “Publishing Equipment
Commands <>"__.

46 Chapter 7. GridAPPS-D Application Structure

[1:

GridAPPS-D, Release 2021 05.0

The application then passes the query through the Simulation API to the Grid APPS-D Platform, which publishes it on
the topic channel for the particular simulation on the GOSS Message Bus. If the app is authenticated and authorized
to control equipment, the difference message is delivered to the Simulation Manager. The Simulation Manager then
passes the command to the simulation through the Co-Simulation Bridge (either FNCS or HELICS).

No response from GridAPPS-D Platform back to Application

The GridAPPS-D Platform does not provide any response back to the application after processing the difference mes-
sage and implementing the new equipment control setpoint.

7.8.2 8.2. Sample App Code

Below is an example of an app code block

import time
from gridappsd import DifferenceBuilder
from gridappsd.topics import simulation_input_topic

input_topic = simulation_input_topic(viz_simulation_id)

my_open_diff = DifferenceBuilder(viz_simulation_id)
my_open_diff.add_difference(sw_mrid, "Switch.open", 1, 0) # Open switch given by sw_mrid
open_message = my_open_diff.get_message()

my_close_diff = DifferenceBuilder(viz_simulation_id)
my_close_diff.add_difference(sw_mrid, "Switch.open", 0, 1) # Close switch given by sw_
—mrid

close_message = my_close_diff.get_message()

while True:
time.sleep(5)
gapps.send(input_topic, open_message)
time.sleep(5)
gapps.send(input_topic, close_message)

7.8.3 8.3. Viewing Application Results in GridAPPS-D Viz

Return to the browser tab in which the Grid APPS-D Simulation is currently running. Switch sw5 will now be opening
and closing every 5 seconds, with the downstream portion of the feeder being de-energized and reconnected with each
switch operation.

The core application algorithm will also reflect this with the printed response alternating between two and three open
switches every few timesteps.

7.8. 8. Publishing Equipment Commands 47

GridAPPS-D, Release 2021_05.0

7.9 9. Querying Historical & Timeseries Data

The next portion of a GridAPPS-D application is querying historical data from the current and/or previous simulations.

All simulation output and commands from the current and previous simulations are stored in the Timeseries Database,
and can be queried to provide AI/ML training data, verify processing of equipment commands, or

Note that Timeseries Database data is cleared when the Grid APPS-D Platform is shut down with the ./stop.sh script. It
is recommended to copy historical / training data to an external persistent directory using the docker cp command,
as given in the [Docker Shortcuts] section.

7.9.1 9.1. Information Flow

The figure below outlines the information flow involved in querying for historical and timeseries data.

The query is sent using the gapps.get_response(topic, message) method on the Timeseries queue channel with
a response expected back from the GridAPPS-D platform within the specified timeout period.

@ e e @

System User Evaluator Operator Test Manager

GridAPPS-D ADMS App

Extemal Query for Power System Model
Vendor DMS Oms ‘ - L
External Vendor Query for Model Measurement mRIDs
ADMS Systems Query for Weather Data
Other Sensor SCADA AMI Me ter P
Data GIS Interface Data Historian Configure Simulation / Export Model
Process Measurements / App Core Algorithm
Subscribe to Simulation
GridAPPS-D Publish Equipment Control Commands
il - . Sensor . Device Protocol — - =
ADMS Services State Estimator simulator Alarm Service Services Query for Historical & Timeseries Data I
‘ Subscribe & Publish Log Messages
: PowerGrid Configuration . " . TCP/IP Network Device Service
GridAPPS-D API Models API File API Simulation API Logging API APl APl

[GOSS Message Bus

Authentication and Authorization Security Layer

GridAPPS-D Core Services Process Configuration Simulation Services ‘ Application ‘ Logging Data Managers

Manager Manager Manager Manager Manager Manager

i . A4

Co-simulator
(HELICS or FNCS)

ery [pp
_Library - - Library - Static Data

(MysQL)

Network Models
(Blazegraph)

GridLab-D

OpenDSS

Graph Model
(NetworkX)

Real-time Data &
Historian
(ProvEn / InfluxDE),

GridAPPS-D Platform
—_

Application passes query to GridAPPS-D Platform

First, the application creates a query message for requesting information about the desired power system components
in the format of a JSON string or equivalant Python dictionary object. The syntax of this message is explained in detail
in Querying Timeseries Data.

The application then passes the query through the Timeseries API to the GridAPPS-D Platform, which publishes it
to a queue channel on the GOSS Message Bus. If the app is authenticated and authorized to pass queries, the query
message is delivered to the Data Managers, which obtain the desired information from the Timeseries Influx Database.

48 Chapter 7. GridAPPS-D Application Structure

3.7%20--%20Lesson%203.7%20--%20Using%20the%20Timeseries%20API.ipynb

[1:

GridAPPS-D, Release 2021 05.0

GridAPPS-D Platform responds to Application query

The Data Managers then publish the response from the Timeseries Influx Database to the appropriate queue channel.
The Timeseries API then returns the desired information back to the application as a JSON message or equivalant
Python dictionary object.

7.9.2 9.2. Sample App Code

import time

start_time = str(int(time.time())-10) # Start query from 10 sec ago
end_time = str(int(time.time()))

Query for a particular set of measurments
message = {
"queryMeasurement": "simulation",
"queryFilter":{"simulation_id": simulation_id,
"startTime": start_time,
"endTime": end_time,
"measurement_mrid": pos_obj},
"responseFormat":"JSON"

¥

gapps.get_response(t.TIMESERIES, message) # Pass API call

7.10 10. Subscribing and Publishing to Logs

The last portion of an application is subscribing and publishing to logs. This step is extremely useful for 1) informing
end users of application behavior and 2) application debugging during development and demonstration.

The The GridAPPS-D Logging API provides an extension of the standard Python logging library and enables appli-
cations to subscribe to real-time log messages from a simulation, query previously logged messages from the MySQL
database, and publish messages to their either own log or their GridAPPS-D logs.

7.10.1 10.1. Information Flow Diagram

The figure below shows the information flow involved in subscribing and publishing to logs.

7.10. 10. Subscribing and Publishing to Logs 49

[1:

GridAPPS-D, Release 2021_05.0

L T

System User Evaluator Operator Test Manager
GridAPPS-D ADMS App
Extemnal Query for Power System Model
Vendor DMS ‘ oms ‘ ‘ L L ‘
External Vendor ‘ Query for Model Measurement mRIDs ‘
ADMS Systems [Query for Weather Data |
Other Sensor Gls SCADA AMI Meter Histori
Data Interface Data istorian ‘ Configure Simulation / Export Model ‘
‘ Process Measurements / App Core Algorithm ‘
[Subscribe to Simulation]
GrdAPPS-D ‘ Publish Equipment Control Commands ‘
i A . Sensor . Device Protocol P - :
ADMS Services State Estimator simulator Alarm Service Services Query for Historical & Timeseries Data ‘
Subscribe & Publish Log Messages ‘ I
- PowerGrid Configuration . . . TCP/IP Network Device Service
GridAPPS-D API Models API File API Simulation API ogging API

[GOSS Message Bus

Authentication and Authorization Security Layer

GridAPPS-D Core Services Process ‘ Data Managers

Manager

Configuration Simulation Services Application Logging
Manager

Manager Manager Manager Manager

Co-simulator
(HELICS or FNCS)

_Library it,,_iLibrary_,,, etwork Models |

(Blazegraph)

Static Data

GridLab-D (Mysan) J

OpenDSs

Real-time Data &
Historian
((ProvEn / InfluxDB)

Graph Model |
(NetworkX) |

GridAPPS-D Platform
| I—

7.10.2 10.2 Sample App Code

from gridappsd.topics import simulation_log_topic
log_topic = simulation_log_topic(viz_simulation_id)

def demoLogFunction(header, message):
timestamp = message["timestamp"]
log_message = message['loglessage"]

print("Log message received at timestamp ", timestamp, "which reads:")
print (log_message)

print(". ")

gapps.subscribe(log_topic, demoLogFunction)

50 Chapter 7. GridAPPS-D Application Structure

[1:

CHAPTER
EIGHT

GRIDAPPS-D SERVICE STRUCTURE

51

GridAPPS-D, Release 2021 05.0

52 Chapter 8. GridAPPS-D Service Structure

CHAPTER
NINE

INTRODUCTION TO THE COMMON INFORMATION MODEL

This section introduces the CIM as a model format that is used for power system data and information exchange across
applications, platforms, and services. The CIM is used for all power system models in GridAPPS-D, and it is important
to have an understanding of the concepts and implementation of CIM for describing power systems using unique mRIDs
for each piece of equipment and associated modeling objects.

9.1 1. Introduction

9.1.1 1.1. What is the Common Information Model?

The Common Information Model (CIM) is an abstract information model that can be used to model an electrical
network and the various equipment used on the network.

CIM is widely used for data exchange of bulk transmission power systems, and is now beginning to find increasing use
for distribution modeling and analysis.

By using a common model, utilities, vendors, and researches from both academia and industry can reduce the effort
and cost of data integration, and instead focus on developing increased functionality for managing and optimizing the
smart grid of the future.

9.1.2 1.2. Why is Data Integration Important?

In a typical distribution utility there are hundreds and even in some cases thousands of software solutions and applica-
tions that are managed by the IT department. These applications are used and operated independently by the various
groups, departments, and organizations within the utility. Whenever a business process requires data from one system
or application to be transferred to another system or application, the data needs to be manually extracted from the first
database and then converted to the format of the other application’s database.

Two strategies exist for dealing with extreme level of effort needed to manage, update, export, convert, and import data
formats between different applications and databases.

1) Reduce the number of databases by purchasing a large software suite from a single vendor using a single propri-
etary data format that is internally-integrated and compatible with all the applications needed by utility

2) Adopt a common data integration platform that allows external integration between multiple software packages
using a shared data format

53

GridAPPS-D, Release 2021 05.0

9.1.3 1.3. What does CIM Provide?

CIM is an information model, that is an abstract, formal representation of objects, their attributes, the relationships
between them, and the operations that can be performed on them. It is NOT a database structure or physical data store.
It is a technology-agnostic model for describing the properties of physical power system equipment, power flow data,
and messages that can be exchanged between various platforms and applications.

To describe various power system objects, CIM uses Class Diagrams and Sequence Diagrams created using the
Unified Modeling Language (UML). It also uses the Resource Description Framework (RDF) to describe classes and
attributes in an eXtensible Markup Language (XML) file format. The details of what is covered in each part of the
CIM is described in detail below.

9.2 2. Background and Structure of the CIM

9.2.1 2.1. UML Class Diagrams

The Unified Modeling Language (UML) provides 13 types of diagrams to define software architecture. One of the is
the UML Class Diagram, which visually represents object hierarchies and relationships.

First a review of basic concepts and terminology related to class diagrams:
* An object is any thing that we want to describe.
* A class represents a specific type of object.

* A class hierarchy is a model of the system showing every component as a separate class. The class hierarchy
should represent the real-world structure of the system.

* A package is a group of classes. Think of folders in a computer file explorer.

 Inheritance allows us to define very general “parent classes” and very specific “child classes”.

* Attributes are the properties that describe what type of thing the class represents.

* Associations are the relationships between various objects and how they are connected to each other.

Class diagrams show all the attributes and associations of various classes in a particular package in a single picture. To
read a class diagram, remember that

 Lines with an arrowhead indicate class inheritance. For example, in the figure below, ACLineSegment inherits
from Conductor, ConductingEquipment, Equipment and then PowerSystemResource. ACLineSegment inherits
all attributes and associations from its ancestors (e.g., length), in addition to its own attributes and ancestors.

* Lines with a diamond indicate composition. For example, Substations make up a SubGeographicalRegion, which
then make up a GeographicRegion.

 Lines without a terminating symbol are associations. For example, ACLineSegment has (through inheritance) a
BaseVoltage, Location and one or more Terminals.

* Italicized names at the top of each class indicate the ancestor (aka superclass), in cases where the ancestor does
not appear on the diagram. For example, PowerSystemResource inherits from IdentifiedObject.

54 Chapter 9. Introduction to the Common Information Model

GridAPPS-D, Release 2021 05.0

class FeecderContext /

IdentifiedObject
Common::CoordinateSystem

Common::PositionPoint

‘ + crsUm: String [0..1] | + groupNumber: Integer [0..1]

+ sequenceNumber: Integer [0..1]
+ xPosition: String [0..1]
«| + yPosition: String [0..1]
+ zPosition: String [0..1]

+CoordinateSystem 0.1 +PositionPoints

+Locations_0..* +Location
IdentifiedObject| . powerSystemResources | pcation IdentiedObject
Core:

PowerSystemResource 0.7 0..1

Core::Equipment

aggregate: Boolean [0..1] ‘ + nominalVoltage: Voltage [0..1] ‘
inService: Boolean [0..1]
networkAnalysisEnabled: Boolean [0..1]
normallylnService: Boolean [0..1]

Core:: 0..* +ConductingEquipment
ConnectivityNodeContainer

‘ IdentifiedObject

Core::BaseVoltage

+BaseVoltage / 0..1

+ o+ o+ o+

+Equipments
O“’n‘

Core::
ConductingEquipment

1

+ConnectivityNodeContainer

1
+ConductingEquipment

IdentifiedObject
Core::ACDCTerminal

+EquipmentContainer
0..1 ‘

Conductor

+ connected: Boolean [0..1]
+ sequenceNumber: Integer [0..1]

+ length: Length [0..1]

Core::
EquipmentContainer

ACLineSegment
Corez:Feeder

0-1 bOch: Susceptance [0..1]

bch: Susceptance [0..1]

g0ch: Conductance [0..1]

gch: Conductance [0..1]

r: Resistance [0..1]

r0: Resistance [0..1]
shortCircuitEndTemperature: Temperature [0..1]
x: Reactance [0..1]

x0: Reactance [0..1]

+ConnectivityNodes

l() +Terminals

ldentifiedObject| 0.%

Core::
ConnectivityNode

Core::Terminal ‘

L I S I I

+Terminals

+ phases: PhaseCode [0..1] ‘

IdentifiedObject

Core::

Core:: GeographicalRegion

SubGeographicalRegion

A complete set of UML Class Diagrams is provided in the Advanced CIM Modeling section. This section contains
class diagrams for all the objects used in GridAPPS-D and tables of properties to help you create and pass your own
custom SPARQL queries to the Blazegraph Database.

9.2.2 2.2. UML Sequence Diagrams

UML sequence diagrams are used to model the flow of messages, events, and actions between the entities of a system.
Time is represented vertically—showing the time sequence of interactions in the system. Displayed horizontally at the
top of the diagram are the applications or entities in the system.

CIM uses UML diagrams to represent work flow, operations processes, and other utility use-cases. For the purposes
of application development within GridAPPS-D, a detailed understanding of UML sequence diagrams is not required.

9.2. 2. Background and Structure of the CIM 55

GridAPPS-D, Release 2021 05.0

9.2.3 2.3. Resource Description Framework (RDF)
The Resource Description Framework (RDF) is a method of defining information models that is specified by the World
Wide Web Consortium (the W3C). Detailed documentation is available on the W3C website.

RDF focuses on making statements about objects in a subject-predicate-object expression. Each expression is com-
monly called a “triple” in RDF terminology. The subject is defined by naming a resource, the object denotes traits or
attributes associated with the subject, and the predicate expresses the relationship between the subject and the object.

The subject, or resource, in an RDF model is expressed as a Uniform Resource Identifier (URI). URIs are similar to
the Uniform Resource Locators (URLs) used as web addresses but are more general because they are not limited to
accessible data on the web. The predicate and object are also technically URIs and so also are just identifiers. The
subject-predicate-object triplets takes the form of expressing syntactical constructs like “a substation has a name”.

RDF Schema (RDFS) files describe the classes, attributes, and relationships of an information model and typically use
an .rdfs file format. RDF instance files describe object instances and typically use an .xml extension. RDF incremental
files describe changes to a set of object instances as described by an instance file, and typically use an .xml extension.

CIM uses RDF instance files to define power system models with unique master resource identifier (mRID) issued by
a model authority. The mRID is globally unique within an exchange context. Global unigeness is easily achived by
using a UUID for the mRID. It is strongly recommended to do this. For CIM XML data files in RDF syntax, the mRID
is mapped to rdf:ID or rdf:about attributes that identify CIM object elements.

2.3.1 Key Concepts & Terminology from RDF

¢ URI References — CIM and GridAPPS-D use two URI references to identify properties and resources. These
identify the RDF format and the CIM classes used.

— <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
— <http://iec.ch/TC57/CIM100#>

9.3 3. Summary of CIM XML Classes

This section provides a brief look at the classes of equipment modeled in CIM XML and used in GridAPPS-D.

Details of each package, the class diagram, and attributes of each class are provided in the relevant sections of the
reference guide to this lesson.

9.3.1 3.1. Names, Nodes, Terminals

The Core package provides very high level information of the distribution feeder model

56 Chapter 9. Introduction to the Common Information Model

https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

GridAPPS-D, Release 2021 05.0

3.1.1. IdentifiedObject

The Core package contains a class called IdentifiedObject. This class is very abstract and only contains attributes used
to reference the object either by a user or in software. The attributes of IdentifiedObject include *mRID*, which is
the master resource identifier that should be a globally 3-18 unique identifier of objects; the mRID does not have to be
human-readable. This identifier is generally intended to be used by software systems.

The attributes name, description, aliasName, and pathName are intended for providing identifiers that are human-
readable. It is common for names of objects within a utility to not be unique due to historical naming conventions,
the results of mergers and acquisitions, and the inability of other software systems to manage uniqueness. For these
reasons, there are no constraints on these names requiring them to be unique.

3.1.2. PowerSystemResource

The PowerSystemResource class inherits from IdentifiedObject and provides another relatively abstract class used in
the CIM. The PowerSystemResource class supports an association to a Company class. This relationship identifies the
company that operates the resource.

3.1.4. ConnectivityNode

The ConnectivityNode class has a relationship to the Terminal class. Each ConductingEquipment object has Termi-
nals, which are then connected to ConnectivityNodes. The terminals can be thought of as being closely related to the
conducting equipment, and the connectivity nodes are the glue that defines what equipment is connected to what other
equipment.

CIM also includes the TopologicalNode class, which is used to convert breaker-switch oriented power system models
to bus-branch models. This object is not used in Grid APPS-D, which does not feature transmission substation config-
urations (e.g. breaker-and-a-half, main-and-transfer-bus, ring-bus, etc.) that require topological processing of breaker
and switch positions to determine network topology and line connectivity.

9.3.2 3.2. Power System Equipment

CIM XML provides a number of classes for defining physical power system equipment, including lines, switches,
transformers, regulators, capacitors, and reactors.

3.2.1. Equipment and ConductingEquipment

The ConductingEquipment class inherits from an Equipment class which inherits from PowerSystemResource. This is
the parent class for most of the physical equipment that are used to model the power system.

3.2.2. Conductor and ACLineSegment

Directly inheriting from Conducting Equipment is the Conductor class. This class specifies the length of the conductor.

Each segment of a distribution line is defined in a CIM model as an ACLineSegment. This class contains the electrical
attributes commonly associated with a line needed for steady state analysis, including the positive-sequence and zero-
sequence resistance, reactance, conductance, and susceptance.

More details are available in the “LineModel class diagram <>"__ and "list of attributes <>"__

9.3. 3. Summary of CIM XML Classes 57

[1:

GridAPPS-D, Release 2021 05.0

3.2.4. PowerTransformer, TransformerWindings, and TapChanger

These three classes specify the portions of a step-down transformer and regulator.

The PowerTransformer class inherits from Equipment (not ConductingEquipment) and has associations to the Trans-
formerWinding class.

The majority of the electrical characteristics associated with the transformer are actually associated with the Trans-
formerWinding objects.

An association from the TransformerWinding class to the TapChanger class is used when the transformer has a tap
changer. The TapChanger class has as attributes for things like the tap steps and nominal setting. The TapChanger
class inherits from the PowerSystemResource class instead of the Equipment class, so it has few inherited attributes and
associations.

9.4 References

Portions of this tutorial have reproduced verbatim text and information from the EPRI report An Introduction to the
CIM for Integrating Distribution Applications and System and the CIM Ontology Diagrams

58 Chapter 9. Introduction to the Common Information Model

http://www.tut.fi/eee/research/adine/materiaalit/Active%20network/ICT/EPRI%20CIM%20for%20distribution.pdf
http://www.tut.fi/eee/research/adine/materiaalit/Active%20network/ICT/EPRI%20CIM%20for%20distribution.pdf
https://ontology.tno.nl/IEC_CIM/

CHAPTER
TEN

APl COMMUNICATION CHANNELS

10.1 1. What are Channels in GridAPPS-D?

When communicating with the Grid APPS-D Platform through API, it is necessary to specify a communication channel,
which tells the GridAPPS-D platform on which channel to communicate with the application and through which API
the message should be directed.

10.2 2. /queue/ vs /topic/

GridAPPS-D uses two types of communication channels to determine the visibility of the API call to other applications
and services.

10.3 2.1. Queue Channels

/queue/ is used for communication channels where only the Grid APPS-D Platform is listening to the API call. These
API calls are processed on a first-in, first-out basis. There is only one subscriber to the communication channel.

API calls to the Blazegraph database, Logs, Timeseries database, Config files, and Platform status are all queue chan-
nels. All the GridAPPS-D Topics for queue channels typically do not change over the course of an application or
simulation run.

In the GridAPPSD-Python library, it is assumed that a topic is a queue channel if not otherwise specified. These two
GridAPPS-D Topic definitions are equivalent:

topic = '/queue/goss.gridappsd.process.request.data.powergridmodel’

topic = 'goss.gridappsd.process.request.data.powergridmodel’

59

[1:

[2]:

GridAPPS-D, Release 2021 05.0

10.4 2.2. Topic Channels

/topic/ is used for communication channels where the API call is to broadcast to all subscribers through the GOSS
Message Bus, inlcuding other applications, services, FNCS Bridge, etc.

API calls to the Simulation, services, and active applications use topic channels to communicate and typically need to
the specify the Simulation ID, Service ID, and Application ID. The particular topic for such an API call will change
between simulations and instances, and so shortcut functions are provided in Grid APPSD-Python library to assist in
generating the correct Topic.

In GridAPPSD-Python, it is necessary to specify if a GridAPPS-D Topic is a /topic/ channel broadcasting to all
subscribers:

topic = "/topic/goss.gridappsd.simulation.input."+simulation_id

10.5 3. Static GridAPPS-D Topics

Below are a list of the most common topics and where they are used. The appropriate topic for each API call will also
be listed again in the subsequent lessons on each GridAPPS-D API. The list below can serve as an additional convenient
reference.

These topics remain the remain the same between platform, application, and simulation instances. The GridAPPSD-
Python Library shortcuts use all uppercase naming to indicate that these are static topic names.

10.5.1 Importing the Topics Library

When using topics in GridAPPSD-Python, it is recommended to import the topics library from gridappsd. This
enables you to rapidly call the correct topic without needing to search for the correct topic string. This also protects
your code from any changes inside the GridAPPS-D Platform if particular topic strings are deprecated or replaced —
the python library names will stay persistent between all Platform releases.

For static Grid APPS-D topics, import the library by running

from gridappsd import topics as t

10.5.2 3.1. Request PowerGrid Model Data

This /queue/ channel is used to communicate with PowerGrid Model API to pull power system model info from the
the Blazegraph Database. The PowerGrid Model API is covered in detail in Lessons 2.2 and 2.3.

The base static string used is goss.gridappsd.process.request.data.powergridmodel, which can be called
using the .REQUEST_POWERGRID_DATA or .BLAZEGRAPH methods from the topics library

A sample message that would be passed with this topic is

from gridappsd import topics as t

Sample PowerGrid Model message, explained in Lesson 2.2.
message = '{"requestType": "QUERY_MODEL_NAMES", "resultFormat": "JSON"}'

gapps.get_response(t.REQUEST_POWERGRID_DATA, message)

60 Chapter 10. APl Communication Channels

[2]:

[1:

GridAPPS-D, Release 2021 05.0

{'data': {'modelNames': ['_204AC68D-C4B3-4D93-A2B5-B1C195C49954",

' _49AD8E®7-3BF9-A4E2-CB8F-C3722F837B62"',
' _4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
' _503D6E20-F499-4CC7-8051-971E23DOBF79',
' _5B816B93-7A5F-B64C-8460-47C17D6E4BOF "',
'_67AB291F-DCCD-31B7-B499-338206B9828F ',
'_77966920-E1EC-EE8A-23EE-4EFD23B205BD"',
'_9CE150A8-8CC5-A0F9-B67E-BBD8C79D3095 ',
' _AAE94E4A-2465-6F5E-37B1-3E72183A4E44 ",
' _C1C3E687-6FFD-C753-582B-632A27E28507 "',
' _E407CBB6-8C8D-9BC9-589C-AB83FBF0826D ']},

'responseComplete': True,

'id': '365753873'}

from gridappsd import topics as t

Sample PowerGrid Model message, explained in Lesson 2.2.
message = '{"requestType": "QUERY_MODEL_NAMES", "resultFormat": "JSON"}'

gapps.get_response(t.BLAZEGRAPH, message)

10.5.3 3.2. Request Timeseries Data

This /queue/ channel is used to communicate with the Timeseries API and Timeseries database, which stores real-
time and historical data, such as weather information and AMI meter readings. The Timeseries database is covered in
detail in Lesson 2.XX. A sample message that would be passed with this topic is

Text String: The topic can be specified as a static string:
e topic = "goss.gridappsd.process.request.data.timeseries"
* gapps.get_response(topic, message)

GridAPPSD-Python Library Method: The correct topic can also be imported from the Grid APPSD-Python topics
library:

e from gridappsd import topics as t

e gapps.get_response(t.TIMESERIES, message)

10.5.4 3.3. Request Platform Status

This topic is used to check that status of the GridAPPS-D Platform.

Text String: The topic can be specified as a static string:
e topic = "/queue/goss.gridappsd.process.request.status.platform”
e gapps.get_response(topic, message)

GridAPPSD-Python Library Method: The correct topic can also be imported from the Grid APPSD-Python topics
library.

10.5. 3. Static GridAPPS-D Topics 61

GridAPPS-D, Release 2021 05.0

e from gridappsd import topics as t

e gapps.get_response(t.PLATFORM_STATUS, message)

10.5.5 3.4. Querying Log Data

This topic is used to query log data in the MySQL Database using the Logging API

Note: This topic is different from the one used to subscribe to real-time log data being published by an ongoing
simulation. This topic is used for querying data already stored in the database.

Text String: The topic can be specified as a static string:
e topic = "goss.gridappsd.process.request.data.log"
* gapps.get_response(topic, message)

GridAPPSD-Python Library Method: The correct topic can also be imported from the Grid APPSD-Python topics
library:

e from gridappsd import topics as t

* gapps.get_response(t.LOGS, message)

10.5.6 3.5. Subscribing to Platform Logs

This topic is used to subscribe the to logs created by the GridAPPS-D Platform, such as which managers and core
services have been started and are running.

Text String: The topic can be specified as a static string:
* topic = "goss.gridappsd.process.request.data.timeseries"
* gapps.get_response(topic, message)

GridAPPSD-Python Library Function: The correct topic can also be imported from the Grid APPSD-Python topics
library. Note that this is a python function similar to the dynamic topics presented in the next section.

 “from gridappsd.topics import platfor_log_topic
e topic = platform_log_topic()
e gapps.get_response(topic, message)

[Return to Top]

62 Chapter 10. APl Communication Channels

[1:

GridAPPS-D, Release 2021 05.0

10.6 4. Dynamic GridAPPS-D Topics

Several GridAPPS-D topics are unique to each application, simulation, or service instance. These topics are dynamic
and will change from instance to instance.

The Grid APPS-D Platform will require that the topic specify the particular instance so that the API call can be delivered
to the correct simulation or service.

To assist with the task of creating a dynamic topic that automatically updates between instances, several function are
available in the Grid APPSD-Python topics library.

The available GridAPPSD-Python functions for dynamic topics are
e simulation_input_topic(simulaton_id) — Gets the topic to write data to for the simulation
e simulation_output_topic(simulation_id) — Gets the topic for subscribing to output from the simulation
e simulation_log_topic(simulation_id) — Topic for the subscribing to the logs from the simulation

e service_input_topic(service_id, simulation_id) — Utility method for getting the input topic for a
specific service

* service_output_topic(service_id, simulation_id) — Utility method for getting the output topic for a
specific service

e application_input_topic(application_id, simulation_id) — Utility method for getting the input
topic for a specific application

e application_output_topic(application_id, simulation_id) — Utility method for getting the output
topic for a specific application

10.6.1 4.1. Subscribe to Simulation Output

This topic is used to communicate with the Simulation API, which is covered in detail in Lesson XX. The Simulation
Output Topic is used to subscribe to the simulation output, enabling applications to listen to switching actions, obtain
equipment measurements, and so on.

The GridAPPSD-Python shortcut function for generating the correct topic is
simulation_output_topic(simulation_id)

There are two ways to use the function. The first is to call the library function directly. The second is to use it as part
of a class definition.

1) Call the topic function directly

Import GridAPPS-D Topic Function:
from gridappsd.topics import simulation_output_topic

Call GridAPPSD-Python Topic Function
topic = simulation_output_topic(simulation_id)

Print to Notebook Kernel:
print(topic)

2) Use the topic function in a class definition

10.6. 4. Dynamic GridAPPS-D Topics 63

[1:

[1:

[1:

GridAPPS-D, Release 2021 05.0

Import GridAPPS-D Topic Function:
from gridappsd.topics import simulation_output_topic

Define Subscription Class
class MySubscription(object):
def __init__(self,simulation_id):
self._subscribe_to_topic = simulation_output_topic(simulation_id)

Define Main Function:

def _mainQ):
subscription = MySubscription(simulation_id)
print(subscription._subscribe_to_topic)

Call Main Function:
_mainQ)

10.6.2 4.2. Publish to Simulation Input

This topic is used to communicate with the Simulation API, which is covered in detail in Lesson XX. The Simulation
Input Topic is used to publish commands to the GOSS Message Bus, which are then broadcast to all applications,
services, and simulations that are listening. Examples of actions that will use this topic include taking switching
actions, adjusting DER setpoints, and changing regulator taps.

The GridAPPSD-Python shortcut function for generating the correct topic is
simulation_input_topic(simulation_id)

There are two ways to use the function. The first is to call the library function directly. The second is to use it as part
of a class definition.

1) Call the topic function directly

Import GridAPPS-D Topic Function:
from gridappsd.topics import simulation_input_topic

Call GridAPPSD-Python Topic Function
topic = simulation_output_topic(simulation_id)

Print to Notebook Kernel:
print(topic)

2) Use the topic function in a class definition

Import GridAPPS-D Topic Function:
from gridappsd.topics import simulation_input_topic

Define Subscription Class
class MySimulationPublisher(object):
def __init__(self,simulation_id):
self._publish_to_topic = simulation_input_topic(simulation_id)

Define Main Function:

(continues on next page)

64 Chapter 10. APl Communication Channels

[1:

[1:

GridAPPS-D, Release 2021 05.0

(continued from previous page)
def _mainQ:
subscription = MySimulationPublisher(simulation_id)
print(subscription._publish_to_topic)

Call Main Function:
_main(Q)

10.6.3 4.3. Subscribe to Simulation Logs

This topic is used to communicate with the Simulation API, which is covered in detail in Lesson XX. The Simulation
Output Topic is used to subscribe to the simulation output, which applications use to * Listen to switching actions *
Obtaining equipment measurements * *GET FULL LIST*

The GridAPPSD-Python shortcut function for generating the correct topic is
simulation_output_topic(simulation_id)

There are two ways to use the function. The first is to call the library function directly. The second is to use it as part
of a class definition.

1) Call the topic function directly

Import GridAPPS-D Topic Function:
from gridappsd.topics import simulation_output_topic

Call GridAPPSD-Python Topic Function
topic = simulation_output_topic(simulation_id)

Print to Notebook Kernel:
print(topic)

2) Use the topic function in a class definition

Import GridAPPS-D Topic Function:
from gridappsd.topics import simulation_output_topic

Define Subscription Class
class MySubscription(object):
def __init__(self,simulation_id):
self._subscribe_to_topic = simulation_output_topic(simulation_id)

Define Main Function:

def _mainQ:
subscription = MySubscription(simulation_id)
print(subscription._subscribe_to_topic)

Call Main Function:
_main(Q)

10.6. 4. Dynamic GridAPPS-D Topics 65

GridAPPS-D, Release 2021 05.0

66 Chapter 10. APl Communication Channels

[1:

CHAPTER
ELEVEN

API MESSAGE STRUCTURE

This tutorial introduces the format used for passing messages to the GridAPPS-D API and how to wrap those messages
using the GridAPPSD-Python Library.

11.1 1. Python Dictionaries VS JSON Strings

One of the confusing aspects of passing messages to and from the GridAPPS-D Platform and APIs is the difference
between Python Dictionaries and JSON scripts, which look identical.

JSON is a serialization format. That is, JSON is a way of representing structured data in the form of a textual string.

A Python Dictionary is a data structure. That is, it is a way of storing data in memory that provides certain abilities
to the code: in the case of dictionaries, those abilities include rapid lookup and enumeration.

It is possible to convert between the two by importing the JSON library: import json. Full documentation of JSON-
Python interoperability and usage is available in Python Docs.

Use the json.dumps () method to serialize a dictionary as a JSON string. Use the json.loads() to import a JSON
file and convert it into a dictionary. But the two are not the same: dictionaries are for working with data in your program,
and JSON is for storing it or sending it around between programs.

With the Grid APPSD-Python Library, it is possible to pass query arguments as either a python dictionary or as a string.
Both approaches will provide the same results.

1) Format API call message as a dictionary

This is the most direct approach, and will be used most often throughout this set of notebook tutorials. The format and
structure of the python dictionary is explained in the next section.

model _mrid = "_49AD8EQ7-3BF9-A4E2-CB8F-C3722F837B62" # IEEE 13 Node used for all example.
—queries

Format message as python dictionary
message = {
"requestType": "QUERY_OBJECT_IDS",
"resultFormat": "JSON",
"modelId": model_mrid,
"objectType": "LoadBreakSwitch"

67

https://docs.python.org/3/library/json.html

[1:

[1:

[1:

GridAPPS-D, Release 2021 05.0

Specify correct topic
topic = "goss.gridappsd.process.request.data.powergridmodel"

Pass API Call to GridAPPS-D Platform
gapps.get_response(topic, message)

2) Format API call message as a string

v

This approach uses quotations (either ' ' or " ") to wrap the API call (identical to the python dictionary) as JSON-

formatted text, concatenated into a string.

model_mrid = "_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62" # IEEE 13 Node used for all example.
—.queries

Format message as JSON text wrapped as a string

message =

{
"requestType": "QUERY_OBJECT_IDS",
"resultFormat": "JSON",
"modelId": "%s",

"objectType": "LoadBreakSwitch"
}

% model_mrid

Specify correct topic
topic = '"goss.gridappsd.process.request.data.powergridmodel”

Pass API Call to GridAPPS-D Platform
gapps.get_response(topic, message)

11.2 2. Structure of a GridAPPS-D Message

The structure of messages in GridAPPS-D follows that of a Python Dictionary using a data structure that is more
generally known as an associative array. An excellent tutorial on advanced usage of the python dictionary structure is
available on Real Python.

A dictionary consists of a collection of key-value pairs. Each key-value pair maps the key to its associated value.
¢ A dictionary is defined by enclosing a comma-separated list of key-value pairs in curly braces ({ }).
* A colon (:) separates each key from its associated value.
» Square brackets ([]) are used for a list of values associated to a particular key.

¢ Additional curly braces ({ }) can be used for cases where multiple key-value pairs (e.g. equipment setpoints)
are associated with a particular key (e.g. an equipment class).

The general dictionary format used for GridAPPS-D messages is

message = {
"keyl": "valuel",
"key2": ["value21", "value22"],
"key3": {

(continues on next page)

68 Chapter 11. API Message Structure

https://realpython.com/python-dicts/

[1:

GridAPPS-D, Release 2021 05.0

(continued from previous page)

"key31": "value31l",
"key32": "value32"
1,

"key": "value"

Important: Be sure to pay attention to placement of commas (,) at the end of each line. Commas are placed at the
end of each line except the last line. Incorrect comma placement will result in a syntax exception.

The particular set of key-value pairs for each GridAPPS-D API is covered in detail in Lessons 2.1 through 2.7.

11.3 3. Parsing Returned Data

After passing an API call, the GridAPPS-D Platform returns a JSON string that is subsequently converted into a python
dictionary by the Grid APPSD-Python Library. This section will outline how to parse the data returned.

For this example, we are going to use a simple query from the PowerGrid Model API (covered in Lesson 2.2.) to obtain
the details of a piece of equipment using its unique mRID (introduced in the next lesson).

model mrid = "_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62" # IEEE 13 Node used for all example.
—.queries

Specify correct topic
topic = "goss.gridappsd.process.request.data.powergridmodel"

message = {
"modelId": model_mrid,
"requestType": "QUERY_OBJECT_DICT",
"resultFormat": "JSON",
"objectType": "LinearShuntCompensator",

¥

Pass API Call to GridAPPS-D Platform
response = gapps.get_response(topic, message)

import json
with open("foo.txt", 'w') as out:
out.write(json.dumps(response, indent=2))
The structure of the python dictionary returned by the API is three key-value pairs for the keys of
e 'data' — this is the data you requested
¢ 'responseComplete' — true or false
e 'id' — unique id associated with the API response dictionary

A typical API response will the structure below:

11.3. 3. Parsing Returned Data 69

[1:

[1:

GridAPPS-D, Release 2021 05.0

response = {
'data': [{'keyl': 'valuel',
'key2': ['value2l', 'value22']},
{'keyl': 'valuel',
'key2': ['value2l', 'value22']}],
'responseComplete': True,
'id': '12345678'
}

The first step is to filter the dictionary to just the data requested: response['data']. The result will be a list object.

Note: some API calls will also need to additional filters of [results] [bindings]. The STOMP Client presented in
the next section is very helpful for previewing the structure of the dictionary returned by Grid APPS-D.

response = gapps.get_response(topic, message)
response_obj = response['data’]

As response_obj is of the python type 1ist rather than dict, it is necessary to use numerical indices instead of keys
to access the values. A simple for loop is very helpful here.

In this example, we want to filter the results to create a list that contains just the name and mRID of the capacitor banks
in the model.

capacitors = []
for index in response_obj:
cap_name = index['IdentifiedObject.name']
cap_mrid = index['id']
message = dict(name = cap_name,
mrid = cap_mrid)
capacitors.append(message)

[Return to Top]

11.4 4. Using the STOMP Client

The GridAPPS-D Visualization App includes a feature to pass API call messages through the GUI using the Simple
Text Oriented Messaging Protocol (STOMP).

Open the Viz App, which is hosted on localhost:8080 (note: cloud-hosted installations will use the IP address of the
server).

70 Chapter 11. API Message Structure

http://localhost:8080/

GridAPPS-D, Release 2021_05.0

sysiem

Log in and click on the menu in the top left corner of the browser window:
[viz_top_menu.png|

Select Stomp Client from the drop-down menu:

|[viz_menu_stomp.png|

This opens the STOMP Client, which can be used to pass a message to any of the GridAPPS-D APIs to preview results
or debug the API call message.

[viz_stomp_client.png|

11.4.1 4.1. Specifying the Topic

The appropriate GridAPPS-D topic needs to be copied and pasted into the Destination Topic box at the top of the
window. The topic specifies on which channel the STOMP Client will communicate with the GridAPPS-D Platform
and to which API the message needs to be delivered.

A complete list of GridAPPS-D topics was provided in Lesson 1.4. and will also be provided in context for each of the
API calls detailed in subsequent lessons.

IMPORTANT: Remember to remove the python wrapping quotations at the beginning and end of the topic. For
example, if the python-wrapped topic was

topic = "goss.gridappsd.process.request.data.powergridmodel"” # Specify the topic
then the topic that is entered in the Stomp Client Destination Topic box is simply
goss.gridappsd.process.request.data.powergridmodel

IMPORTANT: The Grid APPSD-Python shortcut functions will not work in the STOMP Client. The full text string
versions must be used.

11.4. 4. Using the STOMP Client 71

Lesson%201.4.%20GridAPPS-D%20Topics.ipynb

[1:

GridAPPS-D, Release 2021 05.0

11.4.2 4.2. Entering the Request Message

The Request box accepts an API call message identical to those provided in these notebook lessons.

IMPORTANT: Remember to remove the python wrapping at the beginning and end of the message. For example, if
the python-wrapped message was

message = "{"requestType": "QUERY_MODEL_NAMES", "resultFormat": "JSON"}" # Sample
PowerGrid Model API Call

then the message that is entered in the Stomp Client Request box is simply
{"requestType": "QUERY_MODEL_NAMES", "resultFormat": "JSON"}

The STOMP client will automatically flag any errors in the JSON message.

11.5 4.3. Submitting a Request

After entering the topic and message, click Send request to send the API call to the GridAPPS-D Platform. The
response will be displayed in the box below.

[viz_stomp_send_request-2.png|

It can be seen that the response from the STOMP Client is identical to that obtained by passing the same topic and
message using the Grid APPSD-Python Library:

from gridappsd import GridAPPSD # Import Libraries
gapps = GridAPPSD("('localhost', 61613)", username='system', password='manager') #.
—Connect to Platform
topic = "goss.gridappsd.process.request.data.powergridmodel" # Specify correct Topic
message = {
"requestType": "QUERY_MODEL_NAMES",
"resultFormat": "JSON"
} # Sample PowerGrid Model API message
gapps.get_response(topic, message) # Pass API call to Platform

72 Chapter 11. API Message Structure

CHAPTER
TWELVE

USING THE POWERGRID MODELS API

12.1 1. Introduction to the PowerGrid Model API

The PowerGrid Models API is used to pull model information from the Blazegraph Database, inlcuding the names,
mRIDs, measurements, and nominal values of power system equipment in the feeder (such as lines, loads, switches,
transformers, and DERs).

In the Application Components diagram (explained in detail with sample code in Grid APPS-D Application Structure),
the PowerGrid Models API is used for querying for the power system model and querying for model measurement
MRIDs.

[power_grid_models_usage.png|

12.2 2. API Syntax Overview

Application passes query to GridAPPS-D Platform

First, the application creates a query message for requesting information about the desired power system components
in the format of a JSON string or equivalant Python dictionary object. The syntax of this message is explained in detail
below.

The query is sent using gapps.get_response(topic, message) with a response expected back from the platform
within the specified timeout period.

The application then passes the query through the PowerGrid Models API to the Grid APPS-D Platform, which publishes
it to the goss.gridappsd.process.request.data.powergridmodel queue channel on the GOSS Message Bus.
If the app is authenticated and authorized to pass queries, the query message is delivered to the data managers, which
obtain the desired information from the Blazegraph Database.

GridAPPS-D Platform responds to Application query

The data managers then publish the response from the Blazegraph Database to the appropriate queue channel. The
PowerGrid Models API then returns the desired information back to the application as a JSON message or equivalant
Python dictionary object.

73

2.4--Lesson-2.4--GridAPPS-D-Application-Structure.ipynb

[1:

GridAPPS-D, Release 2021 05.0

12.2.1 2.1. APl Communication Channel

All queries passed to the PowerGrid Models API need to use the correct communication channel, which is obtained
using the GridAPPS-D Topics library.

The PowerGrid Model API uses a /queue/ channel to pull power system model info from the the Blazegraph Database.
The base static string used is goss.gridappsd.process.request.data.powergridmodel, which can be called
using the .REQUEST_POWERGRID_DATA or .BLAZEGRAPH methods from the topics library.

When developing in python, it is recommended to use the .REQUEST_POWERGRID_DATA method. When using the
STOMP client in GridAPPS-D VIZ, it is necessary to use the base static string.

from gridappsd import topics as t
topic = t.REQUEST_POWERGRID_DATA

12.2.2 2.2. Structure of a Query Message

Queries passed to PowerGrid Models API are formatted as python dictionaries or equivalent JSON scripts wrapped as
a python string.

message = {

}

"requestType": "INSERT QUERY HERE",
"resultFormat": "JSON",

"modelId": "OPTIONAL INSERT MODEL mRID HERE",
"objectType": "OPTIONAL INSERT CIM CLASS HERE",
"objectId": "OPTIONAL INSERT OBJECT mRID HERE",
"filter": "OPTIONAL INSERT SPARQL FILTER HERE"

The components of the message are as follows:

"requestType": — Specifies the type of query. Available requestType are listed in the next section.

"resultFormat": — Specifies the format of the response, can be "JSON", "CSV", or "XML". (CAUTION: the
PowerGridModel API uses the key resultFormat, while the Timeseries API uses the key reponseFormat. Using
the wrong key for either API will result in a java.lang error.)

"modelID": — Optional. Used to filter the query to only one particular model whose mRID is specified. Be
aware of spelling and capitalization differences between JSON query spelling "modelId" and Python Library
spelling model_id.

"objectType" : —Optional. Used to filter the query to only one CIM class of equipment. Speciying the objectID
will override any values specified for objectType.

"objectID": — Optional. Used to filter the query to only one object whose mRID is specified. Specifying the
objectID will override any values specified for objectType.

"filter": — Optional. Used to filter the query using a SPARQL filter. SPARQL queries are covered in the next
lesson.

The usage of each of these message components are explained in detail with code block examples below.

Important: Be sure to pay attention to placement of commas (,) at the end of each JSON line. Commas are placed at
the end of each line except the last line. Incorrect comma placement will result in a JsonSyntaxException.

All of the queries are passed to the PowerGrid Model API using the .get_response(topic, message) method for
the Grid APPS-D platform connection variable.

74

Chapter 12. Using the PowerGrid Models API

[1:

GridAPPS-D, Release 2021 05.0

12.2.3 2.3. Specifying the requestType
Below are the possible requestType strings that are used to specify the type of each query. Executable code block
examples are provided for each of the requests in the subsections below.

The first group of requestType key-value pairs are for queries for information related to the entire model or a set of
models, such as the model name, mRID, region, and substation:

e "requestType": "QUERY_MODEL_NAMES" — Query for the list of all model name mRIDs
* "requestType": "QUERY_MODEL_INFO" — Query for the dictionary of all details for all feeders in Blazegraph

The second group of requestType key-value pairs are for queries for a single object or a single class of objects withing
a model, such as the object mRID, CIM attributes, or measurement points:

e "requestType": "QUERY_OBJECT_TYPES" — Query for the types of CIM classes of objects in the model

* "requestType": "QUERY_OBJECT_IDS" — Query for a list of all mRIDs for objects of a CIM class in the
model

e "requestType": "QUERY_OBIECT" — Query for CIM attributes of an object using its unique mRID

* "requestType": "QUERY_OBJECT_DICT" — Query for the dictionary of all details for an object using either
its *objectType* OR its *objectID*

e "requestType": "QUERY_OBJECT_MEASUREMENTS" — Query for all measurement types and mRIDs for an
object using either its *objectType* OR its *ObjectID*

The third group of requestType key-value pairs are for queries based on SPARQL filters or complete SPARQL queries.
The structure of SPARQL was introduced in Lesson 1.7 (to be completed soon). Usage of these two requestType will
covered separately in the next two lessons.

e "requestType": "QUERY_MODEL" — Query for all part of a specified model, filtered by object type using a
SPARQL filter.

* "requestType": "QUERY" — Query using a complete SPARQL query.

12.3 3. Querying for Feeder Model Info

This section outlines the pre-built JSON queries that can be passed to the PowerGrid Model API to obtain mRIDs and
other information for all models and feeders stored in the Blazegraph Database.

12.3.1 3.1. Query for mRIDs of all Models

This query obtains a list of all the model MRIDs stored in the Blazegraph database.
Query requestType:

e "requestType": "QUERY_MODEL_NAMES"
Allowed parameters:

e "resultFormat": — “XML” / “JSON” / “CSV” — Optional. Will return results as a list in the format selected.
message = {

"requestType": "QUERY_MODEL_NAMES",
"resultFormat": "JSON"

12.3. 3. Querying for Feeder Model Info 75

[1:

[1:

[1:

[1:

GridAPPS-D, Release 2021 05.0

gapps.get_response(topic, message)

Return to Top

12.3.2 3.2. Query for Details Dictionary of all Models
This query returns a list of names and MRIDs for all models, substations, subregions, and regions for all available
feeders stored in the Blazegraph database.
Query requestType:
e "requestType": "QUERY_MODEL_INFO"
Allowed parameters:

e "resultFormat": — “XML”/ “JSON” / “CSV” — Will return results as a list in the format selected.
message = {

"requestType": "QUERY_MODEL_INFO",
"resultFormat": "JSON"

gapps.get_response(topic, message)

12.4 4. Querying for Object Info

This section outlines the pre-built JSON queries that can be passed to the PowerGrid Model API to obtain mRIDs and
other information for a particular object or a class of objects for one or more feeders stored in the Blazegraph Database.

All of the examples in this section use the IEEE 13 node model. The python constructor %s is used for all queries to
enable the code block to be cut and paste into any python script without needing to change the model mRID.

model_mrid = "_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62" # IEEE 13 Node used for all example.
—queries

12.4.1 4.1. Query for CIM Classes of Objects in Model

This query is used to query for a list of all the CIM XML classes of objects present in the Blazegraph for a particular
model or all models in the database.

Query requestType is
e "requestType": "QUERY_OBJECT_TYPES"
Allowed parameters are

* "modelId": “model name mRID” — Optional. Searches only the particular model identified by the given unique
mRID

e "resultFormat": — “XML”/“JSON” / “CSV” — Will return results as a list in the format selected.

1)QueryentireBlazegraphdatabase

Omit the ‘"'modelld"‘ parameter to search the entire blazegraph database.

76 Chapter 12. Using the PowerGrid Models API

[1:

[1:

[1:

[1:

[1:

[1:

[1:

GridAPPS-D, Release 2021 05.0

message = {
"requestType": "QUERY_OBJECT_TYPES",
"resultFormat": "JSON"

gapps.get_response(topic, message)

2) Query for only a particular model

Specify the model MRID as a python string and pass it as a parameter to the method to return only the CIM classes of
objects in that particular model.

Be aware of spelling and capitalization differences between JSON query spelling "modelId" and Python Library
spelling model_id.

message = {
"requestType": "QUERY_OBJECT_TYPES",
"modelId": model_mrid,
"resultFormat": "JSON"

gapps.get_response(topic, message)

12.4.2 4.2. Query for mRIDs of Objects in a Feeder

This query is used to obtain all the mRIDs of objects of a particular CIM class in the feeder.
Query responseType is

e "requestType": "QUERY_OBJECT_IDS"
Allowed parameters are:

¢ "modelId": “model name mRID” — When specified it searches against that model, if empty it will search against
all models

* "objectType": “CIM Class” — Optional. Specifies the type of objects you wish to return details for.
e "resultFormat": — “XML”/“JSON” / “CSV” — Will return results as a list in the format selected.

Within a particular feeder, it is possible to query for objects of all the CIM classes obtained using "requestType":
"QUERY_OBJECT_TYPES" (discussed above in Section 4.1). Note that the RDF URI is not included in the query, only
the name of the class, such as "objectType": "ACLineSegment" or "objectType": "LoadBreakSwitch".

message = {
"requestType": "QUERY_OBJECT_IDS",
"resultFormat": "JSON",
"modelId": model_mrid,
"objectType": "LoadBreakSwitch"

response_obj = gapps.get_response(topic, message)

response_obj['data’]

12.4. 4. Querying for Object Info 77

[1:

[1:

[1:

[1:

GridAPPS-D, Release 2021 05.0

switch_mrids = response_obj['data']['objectIds']

12.4.3 4.3. Query for CIM Attributes of an Object

This query is used to obtain all the attributes and mRIDs of those attributes for a particular object whose mRID is
specified.

Query responseType is
* "requestType": "QUERY_OBJECT"
Allowed parameters are:

* "modelId": “model name mRID” — When specified it searches against that model, if empty it will search against
all models

e "objectId": “object mRID” — Optional. Specifies the type of objects you wish to return details for.
e "resultFormat": — “XML”/ “JSON” / “CSV” — Will return results as a list in the format selected.

Within a particular feeder, it is possible to query for objects of all the CIM classes obtained using "requestType":
"QUERY_OBJECT_TYPES" (discussed above in Section 4.1). Note that the RDF URI is not included in the query, only
the name of the class, such as "objectType": "ACLineSegment" or "objectType": "LoadBreakSwitch".

object_mrid = "_2858B6C2-0886-4269-884C-06FA8B887319"
message = """
{
"requestType": "QUERY_OBJECT",
"resultFormat": "JSON",
"modelId": "%s",
"objectId": "%s"

}
"% (model_mrid, object_mrid)

message = {
"requestType": "QUERY_OBJECT",
"resultFormat": "JSON",
"objectId": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3"

gapps.get_response(topic, message)

12.4.4 4.4. Query for Object Dictionary
This query returns a python dictionary of all the equipment attributes and mRIDs. The query can be for 1) all objects
of a particular objectType or 2) for those connected to a particular object based on the objectId.

If neither objectType or objectId is provided, the query will provide all measurements belonging to the model.
Query responseType is

e "requestType": "QUERY_OBJECT_DICT"
Allowed parameters are:

* "modelId": “model name mRID” — When specified it searches against that model, if empty it will search against
all models

78 Chapter 12. Using the PowerGrid Models API

[1:

[1:

GridAPPS-D, Release 2021 05.0

e "objectId": “object mRID” — Optional. Specifies the type of objects you wish to return details for.

e "objectType": “CIM Class” — Optional. Specifies the type of objects you wish to return details for.

e "resultFormat": “XML” / “JSON” / “CSV” — Will return results as a list in the format selected.
Speciying the objectID will override any values specified for objectType.

Example 1: Querying for model dictionary for an “*”objectID”:™*

message = {
"modelId": model_mrid,
"requestType": "QUERY_OBJECT_DICT",
"resultFormat": "JSON",
"objectId": switch_mrids[1]

}

gapps.get_response(topic, message)

NVY 99,8

Example 2: Querying for model dictionary for an “*’objectType”:

message = {
"modelId": model_mrid,
"requestType": "QUERY_OBJECT_DICT",
"resultFormat": "JSON",
"objectType": "TransformerTank"

¥

gapps.get_response(topic, message)

12.5 5. Querying for Object Measurements

12.5.1 5.1. Object mRIDs vs Measurement mRIDs

A key concept in GridAPPS-D and CIM XML power system models is the difference between the object mRID of a
piece of equipment and multiple measurement mRIDs associated with its control settings and power flow values.

Measurements differ from the state variables (e.g. those obtained from State Estimator or a power flow calculation) in
that the values are measured here and not calculated or estimated. Each Measurement is associated to a PowerSystem-
Resource, and in GridAPPS-D for now, also a Terminal that belongs to the same PowerSystemResource. (Non-electrical
measurements, for example weather, would not have the Terminal).

The measurementType is a string code from IEC 61850, with the following currently suppported:
e PNV - Phase to Neutral Voltage
* VA - Volt-Amperes (apparent power)
¢ A — Amperes (current)
* POS - Position for switches and transformer taps

Each measurement object has a name, mRID, and phases. In GridAPPS-D, each phase is measured individually so
multi-phase codes like ABC should not be used.

Pos measurements will be discrete, for such things as tap position, switch position, or capacitor bank position.

12.5. 5. Querying for Object Measurements 79

[1:

[1:

GridAPPS-D, Release 2021 05.0

The others will be Analog, with magnitude and optional angle in degrees.

Each MeasurementValue will have a timeStamp and mRID inherited from IdentifiedObject, so the values can be traced.

12.5.2 5.2. Querying for Measurements
This query returns details for the measurements within a model. The query can be for 1) all objects of a particular
objectType or 2) for those connected to a particular object based on the objectId.

If neither objectType or objectId is provided, the query will provide all measurements belonging to the model.
Query responseType is

* "requestType": "QUERY_OBJECT_MEASUREMENTS"
Allowed parameters are:

* "modelId": “model name mRID” — When specified it searches against that model, if empty it will search against
all models

* "objectId": “object mRID” — Optional. Specifies the type of objects you wish to return details for.
e "objectType": “CIM Class” — Optional. Specifies the type of objects you wish to return details for.
e "resultFormat": “XML”/ “JSON” / “CSV” — Will return results as a list in the format selected.
Speciying the objectID will override any values specified for objectType.
Example 1: Querying for all measurements for an “*”’objectID”:™
message = {
"modelId": model_mrid,
"requestType": "QUERY_OBJECT_MEASUREMENTS",
"resultFormat": "JSON",

"objectId": switch_mrids[1]
}

gapps.get_response(topic, message)

Example 2: Querying for all measurements for an “*”’objectType”:™"

message = {
"modelId": model_mrid,
"requestType": "QUERY_OBJECT_MEASUREMENTS",
"resultFormat": "JSON",
"objectType": "ACLineSegment"
}

gapps.get_response(topic, message)

80 Chapter 12. Using the PowerGrid Models API

[1:

[1:

[1:

GridAPPS-D, Release 2021 05.0

12.6 5.3. Filtering Returned Data

After receiving the python dictionary of measurements, it will be necessary to parse it to inlcude just the desired set of
measurements. This is done using the method presented in Parsing Returned Data

obj_msr_ACline = gapps.get_response(topic, message, timeout=10)

Filter to just values for 'data' key
obj_msr_ACline = obj_msr_ACline['data']

Chose specific measurement mrid. Screen out those whose type is not PNV. For example,
obj_msr_ACline = [k for k in obj_msr_ACline if k['type'] == 'Pos']

obj_msr_ACline

12.7 6. GridAPPSD-Python Shortcut Methods

A small number of simple PowerGrid Model API queries have pre-built Python functions that can be used without
specifying the topic and a particular message.

12.7.1 6.1. Querying for mRIDs of all Models
The .query_model_names method is associated with the Grid APPSD connection object and returns a list of all the
CIM XML classes of objects present in the Blazegraph for a particular model or all models in the database.

This method will return identical results to the python dictionary message explained above in Section 3.1

gapps.query_model_names()

12.7.2 6.2. Query for CIM Classes of Objects in Model
The . query_object_types method is associated with the Grid APPSD connection object and returns a list of all the
CIM XML classes of objects present in the Blazegraph for a particular model or all models in the database.
This method will return identical results to the python dictionary message explained above in Section 4.1
Allowed parameters are

* model_id (optional) - when specified, it searches only the particular model identified by the given unique mRID
1) Query entire Blazegraph database

Leave the arguments blank to search all models in the Blazegraph database
gapps.query_object_types()

2) Query for only a particular model

Specify the model MRID as a python string and pass it as a parameter to the method to return only the CIM classes of
objects in that particular model

12.6. 5.3. Filtering Returned Data 81

[1:

[1:

GridAPPS-D, Release 2021 05.0

model mrid = "_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62" # IEEE 13 Node used for all example.
—queries
gapps.query_object_types(model_mrid)

12.7.3 6.3. Query for CIM Attributes of an Object

The .query_object method is associated with the GridAPPSD connection object and returns a list of all the CIM
XML classes of objects present in the Blazegraph for a particular model or all models in the database.

This method will return identical results to the python dictionary message explained above in Section 4.3

model mrid = "_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62" # IEEE 13 Node used for all example.
—.queries
object_mrid = "_2858B6C2-0886-4269-884C-06FA8B887319"

gapps.query_object(model_mrid, object_mrid)

12.8 7. Available Models in Default Installation

12.8.1 7.1. IEEE 13 Node Model

This is a very small distribution test feeder operating at 4.16 kV voltage level. It consists of a single voltage regulator
at the substation, overhead and underground lines, shunt capacitor, and an in-line transformer. This feeder is relatively
highly loaded and provides a good test of the convergence of the problem for a very unbalanced system.

This model is recommended for debugging as the model is small enough that issues can be traced by hand.

12.8.2 7.2. IEEE 123 Node Model

This models a medium-sized unbalanced distribution system operating at the nominal voltage of 4.16 kV. It consists
of overhead and underground lines with single, two and three-phase laterals, along with step regulators and shunt
capacitors for voltage regulation. The feeder model is characterized by the unbalanced loading having all combinations
of load types (constant current, impedance, and power). It also includes a few switches to allow for the alternate paths
for the power flow via feeder reconfiguration.

This model is recommended for initial app testing and debugging thorugh the first stages of development.

12.8.3 7.3. IEEE 123 Node Model with PV

12.8.4 7.4. IEEE 8500 Node Model

This is a relatively large and realistic radial distribution feeder consisting of MV and LV (secondary) circuits [21].
Unlike other test systems, this feeder also includes 120/240V center-tapped transformers that are commonly deployed
in North American power distribution systems. Thus, it allows for users to interchange between the two versions of
loading conditions: balanced (208 V) and unbalanced (120 V) in the secondary transformers. Voltage control is possible
using a substation LTC transformer, as well as multiple poletop regulators and capacitor banks. The feeder was created
to test scalability and convergence of power flow algorithms on a large unbalanced power distribution system.

82 Chapter 12. Using the PowerGrid Models API

GridAPPS-D, Release 2021 05.0

e Length: 170 km

* Nominal voltage: 12.47 kV, 120/240V
» Topology: radial

* Service transformers: yes
 Customers: 1177

e Peak load: 11.1 MW

* Normally-open switches: no

12.8.5 7.5. 9500 Node Test System

The 9500 Node Test System includes three radial distribution feeders with just over 12 MW of load, consisting of both
medium voltage and low voltage equipment each supplied by a different distribution substation. The three distribution
feeders are connected to each other through Normally-Open switches, which is representative of the way many utilities
operate in North America. One feeder represents today’s grid with low penetration of customer-side renewables. The
second represents a potential future grid with microgrids and 100% renewable penetration. The third has no customer
resources, a district steam plant, and a utility-scale PV farm. All three feeders have customers connected by low-voltage
secondary triplex lines.

DER Name kW Rating lkl‘::gng Characteristics Equipment Feeder |Location

SteamGenl 3000 4000 Legacy CHP steam plant S3 Old Town

PVFarm 500 750 Community solar farm S3 Old Town

MicroTurb-1 200 250 S2

MicroTurb-2 (200 250 . . S2 New Neighborhood Microgrid
MicroTurb-3 1200 250 Natural gas microturbine Capstone C200S [10])

MicroTurb-4 [200 250 S2 Central Neighborhood
Diesel620 620 775 Inverter-connected diesel genset |Innovus IP CVS 620 [15] |S1 Hospital Microgrid
Diesel590 590 737 (VAR support when OFF) Innovus IP CVS 590 S1 Central Neighborhood
LNGEnginelOO0 |100 125 Inverter-connect LNG genset InVerde Ultera 125[16] [S1 Shopping Center Microgrid
LNGEnginel800|1800 2250 LNG reciprocating peaking unit |Cummins HSK78G [13] |[Sl1 Industrial District Microgrid
Batteryl 250 250 Generic battery storage S2 . . .
Battery?2 250 250 Generic battery storage S2 New Neighborhood Microgrid

12.8.6 7.6. PNNL Taxonomy Feeder
12.8.7 7.7. EPRI J1 Feeder

12.8.8 7.8. UAF Microgrid

|GridAPPS-D_narrow.png|

12.8. 7. Available Models in Default Installation 83

GridAPPS-D, Release 2021 05.0

84 Chapter 12. Using the PowerGrid Models API

CHAPTER
THIRTEEN

USING THE CONFIGURATION FILE API

13.1 1. Introduction to the Configuration File API

The Configuration File API is used to generate power system models that can be solved in GridLab-D or OpenDSS
based on the original CIM XML model. The load profile and ZIP parameters can be modified from the nominal values
prior to model creation and export.

In the Application Components diagram (explained in detail with sample code in Grid APPS-D Application Structure),
the Configuration File API is used for configuring parallel simulations and exporting the power system model.

[04_config_sim_export.png|
Application passes query to GridAPPS-D Platform

First, the application creates a query message for requesting information about the desired power system configuration
in the format of a JSON string or equivalant Python dictionary object. The syntax of this message is explained in detail
below.

The application then passes the query through the Configuration File API to the Grid APPS-D Platform, which publishes
it to a queue channel on the GOSS Message Bus. If the app is authenticated and authorized to pass queries, the query
message is delivered to the Configuration Manager.

GridAPPS-D Platform responds to Application query

The Configuration Manager obtains the CIM XML file for the desired power system model and then converts it to the
desired output format with all of the requested changes to the model. The Configuration File API then returns the
desired information back to the application as a JSON message (for Y-Bus or partial models) or export the files to the
directory specified in the

13.2 2. API Syntax Overview

13.2.1 2.1. APl Communication Channel

All queries passed to the PowerGrid Models API need to use the correct communication channel, which is obtained
using the GridAPPS-D Topics library.

The PowerGrid Model API uses a /queue/ channel to pull power system model info from the the Blazegraph Database.
The base static string used is goss.gridappsd.process.request.config, which can be called using the . CONFIG
method from the topics library.

When developing in python, it is recommended to use the .CONFIG method. When using the STOMP client in
GridAPPS-D VIZ, it is necessary to use the base static string.

85

2.4--Lesson-2.4--GridAPPS-D-Application-Structure.ipynb

[1:

GridAPPS-D, Release 2021 05.0

from gridappsd import topics as t
topic = t.CONFIG

13.2.2 2.2. Structure of a Query Message

Queries passed to Configuration File API are formatted as python dictionaries or equivalent JSON scripts wrapped as
a python string.

The accepted set of key-value pairs for the Configuration File API query message is

message = {
"configurationType": "INSERT QUERY HERE",
"parameters": {
"keyl": "valuel",
"key2": "value2"}
}

The components of the message are as follows:

* "configurationType": — Specifies the type of configuration file requested.
e "parameters": — Specifies any specific power system model parameters. Values depend on the particular
configurationType.

The usage of each of these message components are explained in detail with code block examples below.

Important: Be sure to pay attention to placement of commas (,) at the end of each JSON line. Commas are placed at
the end of each line except the last line. Incorrect comma placement will result in a JsonSyntaxException.

All of the queries are passed to the Configuration API using the .get_response(topic, message) method for the
GridAPPS-D platform connection variable.

13.2.3 2.3. Specifying the configurationType
Below are the possible configurationType key-value pairs that are used to specify the type of each query. Executable
code block examples are provided for each of the requests in the subsections below.

The first group of configurationType key-value pairs are for queries for information related to the GridLab-D GLM files
and settings:

e "configurationType": "GridLab-D All" — Query for all GridLab-D files

* "configurationType": "GridLab-D Base GLM" — Query for GridLab-D base GLM file

e "configurationType": "GridLab-D Symbols" — Query for GridLab-D symbols file

e "configurationType": "GridLab-D Simulation Output" — Query for available measurement types
The second group of configurationType are for queries for CIM dictionary and feeder index files:

e "configurationType": "CIM Dictionary" — Query for python dictionary of CIM XML model

e "configurationType": "CIM Feeder Index" — Query for python dictionary of model mRIDs
The third group of configurationType key-value pairs are for queries for OpenDSS model files

e "configurationType": "DSS All" — Query for all OpenDSS model files

e "configurationType": "DSS Base" — Query for OpenDSS version of power system model

86 Chapter 13. Using the Configuration File API

[1:

GridAPPS-D, Release 2021 05.0

e "configurationType": "DSS Coordinate" — Query for list of OpenDSS XY coordinates

* "configurationType": "YBus Export" — Export Y-Bus matrix from OpenDSS

13.3 3. Querying for GridLab-D Configuration Files

This section outlines the details of key-value pairs for the possible queries associated with each value of the

queryMeasurement key listed above.

13.3.1 3.1. Query for all GridLab-D Files

This API call generates all the GLM files necessary to solve the power system model in GridLab-D. The query returns

a directory where the set of GLM files are located.
Configuration File request key-value pair:

e "configurationType": "GridLab-D All"

The parameters key has a set of required values as well as some optional values:

REQUIRED KEYS
"model_id":
"directory":
"simulation_name":
"simulation_start_time":
"simulation_duration":
"simulation_id":
"simulation_broker_host":
"simulation_broker_port":

OPTIONAL KEYS
"i_fraction":
"p_fraction":
"z_fraction":
"load_scaling_factor":
"schedule_name":
"solver_method":

"parameters": {

REQUIRED VALUES
mRID as string ,
output directory as string ,
string ,
epoch time number ,
number ,
number ,
string ,
number ,
OPTIONAL VALUES
number ,
number ,
number ,
number ,
string ,
string }

The numeric values for the key-value pairs associated with parameters can be written as number or as strings. The

key-value pairs can be specified in any order.

Example: Export IEEE 13 node model with constant current loads to GLM files :

topic = "goss.gridappsd.process.request.config"

message = {
"configurationType": "GridLAB-D All",
"parameters": {

"directory": "/tmp/gridlabdsimulation/",

"model_id": model_mrid,
"simulation_id": "12345678",
"simulation_name": "mysimulation",

"simulation_start_time": "1518958800",

(continues on next page)

13.3. 3. Querying for GridLab-D Configuration Files

87

[1:

GridAPPS-D, Release 2021 05.0

(continued from previous page)

"simulation_duration": "60",
"simulation_broker_host": "localhost",
"simulation_broker_port": "61616",
"schedule_name": "ieeezipload",
"load_scaling_factor": "1.0",
"z_fraction": "0.0",
"i_fraction": "1.0",
"p_fraction": "0.0",
"solver_method": "NR" }

}

gapps.get_response(topic, message, timeout = 120)
Note: The output directory is inside the Grid APPS-D Docker Container, not in your Ubuntu or Windows environment.

To access the files, it is necessary to change directories to those inside the docker container.

Open a new Ubuntu terminal and run: * docker exec -it gridappsd-docker_gridappsd_1 bash * cd /tmp/
gridlabdsimulation * 1s -1

To copy the files to your regular directory, use the docker cp command. For help using docker, see Docker Shortcuts
on working with Docker containers.

[2_7_config_file_docker_directory.png|

13.4 3.2. Query for GridLab-D Base GLM File

This API call generates a single GLM file that contains the entire power system model that can be solved in GridLab-D.
The query returns the entire model GLM file wrapped in a python dictionary.

Configuration File request key-value pair:
e "configurationType": "GridLab-D Base GLM"

The parameters key has a set of required values as well as some optional values:

"parameters": { REQUIRED KEYS REQUIRED VALUES
"model_id": mRID as string ,
OPTIONAL KEYS OPTIONAL VALUES
"i_fraction": number ,
"p_fraction": number ,
"z_fraction": number ,
"load_scaling_factor": number ,
"schedule_name": string }

The numeric values for the key-value pairs associated with parameters can be written as number or as strings. The
key-value pairs can be specified in any order.

Example 1: Create GLM base file using nominal load values:

topic = '"goss.gridappsd.process.request.config"

message = {
(continues on next page)

88 Chapter 13. Using the Configuration File API

1.6--Lesson-1.6--Docker-Shortcuts.ipynb

[1:

[1:

GridAPPS-D, Release 2021 05.0

(continued from previous page)

"configurationType": "GridLAB-D Base GLM",
"parameters": {"model_id": model_mrid}

}
gapps.get_response(topic, message, timeout = 60)

Example 2: Create GLM base file using all constant current loads and hourly load curve:

topic = "goss.gridappsd.process.request.config"

message = {

"configurationType": "GridLAB-D Base GLM",

"parameters": {
"model_id": model_mrid,
"load_scaling_factor": "1.0",
"z_fraction": 0.0,
"i_fraction": 1.0,
"p_fraction": "0.0",
"schedule_name": "ieeezipload"}

¥

gapps.get_response(topic, message, timeout = 60)

13.5 3.3. Query for GridLab-D Symbols File

This API call generates a file with all the XY coordinates used by GridLab-D when running a simulation.
Configuration File request key-value pair:
e "configurationType": "GridLab-D Symbols"

The parameters key has a set of required values as well as some optional values:

"parameters": { REQUIRED KEYS REQUIRED VALUES
"model_id": mRID as string ,
OPTIONAL KEYS OPTIONAL VALUES
"simulation_id": number }

The key-value pairs can be specified in any order.

topic = "goss.gridappsd.process.request.config"

message = {
"configurationType": "GridLAB-D Symbols",
"parameters": { "model_id": model_mrid }

}

gapps.get_response(topic, message)

13.5. 3.3. Query for GridLab-D Symbols File 89

[1:

[1:

GridAPPS-D, Release 2021 05.0

13.6 3.4. Query for GridLab-D Measurement Types

This API call returns a list of device names and types of available measurement in the GridLab-D format (not CIM
classes or measurement mRIDs)

Configuration File request key-value pair:
e "configurationType": "GridLab-D Simulation Output"

The parameters key has a set of required values as well as some optional values:

"parameters": { REQUIRED KEYS REQUIRED VALUES
"model_id": mRID as string ,
OPTIONAL KEYS OPTIONAL VALUES
"simulation_id": number }

The key-value pairs can be specified in any order.

topic = "goss.gridappsd.process.request.config"

message = {
"configurationType": "GridLAB-D Simulation Output",
"parameters":{"model_id": model mrid}

}

gapps.get_response(topic, message)

13.7 4. Querying for CIM Dictionary Files

13.7.1 4.1. Query for Model Dictionary
This API generates a python dictionary which maps the CIM mRIDs of objects in the power system model to names of
model objects used in other simulators.
Configuration File request key-value pair:
e "configurationType": "CIM Dictionary"

The parameters key has a set of required values as well as some optional values:

"parameters": { REQUIRED KEYS REQUIRED VALUES
"model_id": mRID as string ,
OPTIONAL KEYS OPTIONAL VALUES
"simulation_id": number }

The key-value pairs can be specified in any order.

topic = "goss.gridappsd.process.request.config"

message = {
"configurationType": "CIM Dictionary",
"parameters":{"model_id": "_AAE94E4A-2465-6F5E-37B1-3E72183A4E44"}

(continues on next page)

90 Chapter 13. Using the Configuration File API

[1:

GridAPPS-D, Release 2021 05.0

(continued from previous page)

}

gapps.get_response(topic, message, timeout = 30)

13.7.2 4.2. Query for CIM Feeder Index

This API call returns a python dictionary of the available feeders in the Blazegraph database of power system models.
Configuration File request key-value pair:
e "configurationType": "CIM Feeder Index"

The parameters key has a set of required values as well as some optional values:

"parameters": { REQUIRED KEYS REQUIRED VALUES
"model_id": mRID as string ,
OPTIONAL KEYS OPTIONAL VALUES
"simulation_id": number }

The key-value pairs can be specified in any order.

topic = "goss.gridappsd.process.request.config"

message = {
"configurationType": "CIM Feeder Index",
"parameters":{"model_id": model mrid}

}

gapps.get_response(topic, message)

13.8 5. Querying for OpenDSS Configuration Files

13.8.1 5.1. Query for all OpenDSS Files

This API call generates all the OpenDSS files necessary to solve the power system model in OpenDSS. The query
returns a directory where the set of DSS files are located.

Configuration File request key-value pair:
e "configurationType": "DSS All"

The parameters key has a set of required values as well as some optional values:

"parameters": { REQUIRED KEYS REQUIRED VALUES
"model_id": mRID as string ,
"directory": desired output directory as string.
"simulation_name": string ,
"simulation_start_time": epoch time number ,

(continues on next page)

13.8. 5. Querying for OpenDSS Configuration Files 91

[1:

GridAPPS-D, Release 2021 05.0

(continued from previous page)

"simulation_duration":
"simulation_id":
"simulation_broker_host":
"simulation_broker_port":
OPTIONAL KEYS
"i_fraction":
"p_fraction":
"z_fraction":
"load_scaling_factor":
"schedule_name":
"solver_method":

number
number
string
number

OPTIONAL VALUES

number
number
number
number
string
string

The numeric values for the key-value pairs associated with parameters can be written as number or as strings. The

key-value pairs can be specified in any order.

Example: Export IEEE 13 node model with constant current loads to DSS files :

topic = "goss.gridappsd.process.request.config"

message = {
"configurationType": "DSS All",
"parameters": {
"directory": "/tmp/dsssimulation/",
"model_id": model_mrid,
"simulation_id": "12345678",
"simulation_name": "ieeel3",
"simulation_start_time": "1518958800",
"simulation_duration": "60",
"simulation_broker_host": "localhost",
"simulation_broker_port": "61616",
"schedule_name": "ieeezipload",
"load_scaling_factor": "1.0",
"z_fraction": "0.0",
"i_fraction": "1.0",
"p_fraction": "0.0",
"solver_method": "NR" }
}

gapps.get_response(topic, message)

Note: The output directory is inside the Grid APPS-D Docker Container, not in your Ubuntu or Windows environment.

To access the files, it is necessary to change directories to those inside the docker container.

Open a new Ubuntu terminal and run: * docker exec -it gridappsd-docker_gridappsd_1 bash * cd /tmp/

dssdsimulation * 1s -1

To copy the files to your regular directory, use the docker cp command. For help using docker, see Docker Shortcuts

on working with Docker containers.

92

Chapter 13. Using the Configuration File API

1.6--Lesson-1.6--Docker-Shortcuts.ipynb

GridAPPS-D, Release 2021 05.0

13.8.2 5.2. Query for OpenDSS Base File
This API call generates a single DSS file that contains the entire power system model that can be solved in OpenDSS.
The query returns the entire model DSS file wrapped in a python dictionary.
Configuration File request key-value pair:
e "configurationType": "DSS Base"

The parameters key has a set of required values as well as some optional values:

"parameters": { REQUIRED KEYS REQUIRED VALUES
"model_id": mRID as string ,
OPTIONAL KEYS OPTIONAL VALUES
"i_fraction": number ,
"p_fraction": number ,
"z_fraction": number ,
"load_scaling_factor": number ,
"schedule_name": string }

The numeric values for the key-value pairs associated with parameters can be written as number or as strings. The
key-value pairs can be specified in any order.

Example 1: Create GLM base file using nominal load values:

: topic = "goss.gridappsd.process.request.config"

message = {
"configurationType": "DSS Base",
"parameters": {"model_id": model mrid}

}
gapps.get_response(topic, message)

Example 2: Create GLM base file using all constant current loads and hourly load curve:

: topic = "goss.gridappsd.process.request.config’

message = {

"configurationType": "DSS Base",

"parameters": {
"model_id": model_mrid,
"load_scaling_factor": "1.0",
"z_fraction": 0.0,
"i_fraction": 1.0,
"p_fraction": "0.0",
"schedule_name": "ieeezipload"}

¥

gapps.get_response(topic, message)

13.8. 5. Querying for OpenDSS Configuration Files 93

[1:

[1:

GridAPPS-D, Release 2021 05.0

13.8.3 5.3. Query for OpenDSS Coordinate File

This API call generates a file with all the XY coordinates used by OpenDSS when plotting the feeder.
Configuration File request key-value pair:
e "configurationType": "DSS Coordinate"

The parameters key has a set of required values as well as some optional values:

"parameters": { REQUIRED KEYS REQUIRED VALUES
"model_id": mRID as string ,
OPTIONAL KEYS OPTIONAL VALUES
"simulation_id": number }

The key-value pairs can be specified in any order.

topic = "goss.gridappsd.process.request.config"

message = {
"configurationType": "DSS Coordinate",
"parameters": {"model_id": model_mrid}

}

gapps.get_response(topic, message)

13.8.4 5.4. Query for Y-Bus Matrix

This API call generates a Y-Bus matrix from either the model mRID or the simulation id.

Note: The GridAPPS-D platform currently does not have an in-built topology processor, so the Y-Bus matrix is NOT
updated during the simulation to reflect switching actions or transformer tap changes that happen in real time.

Configuration File request key-value pair:
e "configurationType": "YBus Export"

The parameters key has a set of required values as well as some optional values:

"parameters": { REQUIRED KEYS REQUIRED VALUES
"model_id": mRID as string ,
OR
"simulation_id": number }

The key-value pairs can be specified in any order.

Example 1: Request Y-Bus for IEEE 13 node model using model mRID:

topic = "goss.gridappsd.process.request.config"

message = {
"configurationType": "YBus Export",
"parameters": {"model_id": model_mrid}

}

gapps.get_response(topic, message)

94 Chapter 13. Using the Configuration File API

[1:

[1:

[1:

[1:

GridAPPS-D, Release 2021_05.0

Example 2: Request Y-Bus for IEEE 13 node model with all loads set as constant current using model mRID:

topic = "goss.gridappsd.process.request.config"

message = {

"configurationType": "YBus Export",
"parameters": {
"model_id": "_C1C3E687-6FFD-C753-582B-632A27E28507",
"load_scaling_factor": "2.0",
"schedule_name": "ieeezipload",
"z_fraction": "0.4",
"i_fraction": "0.3",

"p_fraction": "0.3" }
}

gapps.get_response(topic, message)
Example 3: Obtain Y-Bus from simulation_id:
viz_simulation_id = "paste id here"
topic = "goss.gridappsd.process.request.config"
message = {
"configurationType":"YBus Export",
"parameters":{"simulation_id": viz_simulation_id}

}

gapps.get_response(topic, message)

|GridAPPS-D_narrow.png|

13.8. 5. Querying for OpenDSS Configuration Files 95

GridAPPS-D, Release 2021 05.0

96 Chapter 13. Using the Configuration File API

CHAPTER
FOURTEEN

INDICES AND TABLES

* genindex
* modindex

¢ search

97

	Windows 10 Installation
	Virtual Machine & Docker Setup
	Table of Contents
	1. Verify System Requirements
	2. Verify OS Build
	3. Install Windows Subsystem for Linux
	3.1. Enable WSL
	3.2. Upgrade to WSL2
	3.3. Install Linux Ubuntu OS
	3.4. Set up Ubuntu in WSL

	4. Install Docker for Windows

	Installing GridAPPS-D
	1. Clone the GridAPPS-D Docker repository
	2. Install the GridAPPS-D Docker Containers
	3. Launch the GridAPPS-D Platform

	Running GridAPPS-D
	1. Starting the Platform
	2. Stopping the Platform
	3. Restarting the Platform
	4. Pulling Updated Containers

	Installing Python Tutorials
	1. Install Git for Windows
	2. Install Anaconda or Miniconda
	3. Install Jupyter Lab
	4. Install GridAPPSD-Python
	5. Download Python Training Notebooks

	Using the GridAPPS-D Viz
	Docker Shortcuts
	GridAPPS-D Introduction
	1. What is GridAPPS-D?
	2. GridAPPS-D Platform Characteristics
	2.1. Vendor / Vendor Platform Independent
	2.2. Standards-based Architecture
	2.3. Replicable
	2.4. Flexible Distribution Simulation

	3. Data Representation & Management
	3.1. Standards-based Data Representation
	3.2. Standards-based Data Interfaces
	3.3. Data Translation to Non-standardized Elements
	3.4. Available Distribution Feeders

	4. Real-Time Distribution Simulation
	4.1. Real-Time & Faster-than-Real-Time Simulation
	4.2. Controllable Power System Equipment
	4.3. Noisy / Bad Data Injection & Communication Failures
	4.4. Reconfigurable Power System Topologies
	4.5. Real-Time Simulation Visualization

	5. Using the GridAPPS-D Platform

	GridAPPS-D Architecture
	1. GridAPPS-D Architecture
	2. GridAPPS-D User Roles
	3. Integration with External Vendor Systems
	4. GridAPPS-D Applications
	5. GridAPPS-D Services
	6. GridAPPS-D Application Programming Interface
	7. GOSS Message Bus
	8. GridAPPS-D Core Services
	9. Co-Simulation Framework
	10. Database Structures

	GridAPPS-D Python Library
	Getting Started
	1. A First Course in GridAPPSD-Python
	2. Building Blocks of an Application
	2.1. Import Required Python Libraries
	2.2. Import Required GridAPPS-D Libraries
	2.3. Establish a Connection to the GridAPPS-D Platform
	Option 1: Manually specify connection parameters
	Option 2: Use GridAPPS-D utils to determine connection

	2.4. Pass a Simple API Call

	GridAPPS-D Application Structure
	1. Application Structure
	2. Querying for the Power System Model
	2.1. Information flow
	2.2. Sample App code

	3. Querying for Measurement mRIDs
	3.1. Information Flow

	4. Querying for Weather Data
	4.1. Information Flow
	4.2. Sample App Code

	5. Configuring a Parallel Simulation
	5.1. Information Flow
	5.2. Sample App Code

	6. Processing Measurements & App Core Algorithm
	6.1 Information Flow
	6.2. Sample App Code

	7. Subscribing to Simulation Output
	7.1. Information Flow
	7.2. Sample App Code

	8. Publishing Equipment Commands
	8.1. Information Flow
	8.2. Sample App Code
	8.3. Viewing Application Results in GridAPPS-D Viz

	9. Querying Historical & Timeseries Data
	9.1. Information Flow
	9.2. Sample App Code

	10. Subscribing and Publishing to Logs
	10.1. Information Flow Diagram
	10.2 Sample App Code

	GridAPPS-D Service Structure
	Introduction to the Common Information Model
	1. Introduction
	1.1. What is the Common Information Model?
	1.2. Why is Data Integration Important?
	1.3. What does CIM Provide?

	2. Background and Structure of the CIM
	2.1. UML Class Diagrams
	2.2. UML Sequence Diagrams
	2.3. Resource Description Framework (RDF)
	2.3.1 Key Concepts & Terminology from RDF

	3. Summary of CIM XML Classes
	3.1. Names, Nodes, Terminals
	3.1.1. IdentifiedObject
	3.1.2. PowerSystemResource
	3.1.4. ConnectivityNode

	3.2. Power System Equipment
	3.2.1. Equipment and ConductingEquipment
	3.2.2. Conductor and ACLineSegment
	3.2.4. PowerTransformer, TransformerWindings, and TapChanger

	References

	API Communication Channels
	1. What are Channels in GridAPPS-D?
	2. /queue/ vs /topic/
	2.1. Queue Channels
	2.2. Topic Channels
	3. Static GridAPPS-D Topics
	Importing the Topics Library
	3.1. Request PowerGrid Model Data
	3.2. Request Timeseries Data
	3.3. Request Platform Status
	3.4. Querying Log Data
	3.5. Subscribing to Platform Logs

	4. Dynamic GridAPPS-D Topics
	4.1. Subscribe to Simulation Output
	4.2. Publish to Simulation Input
	4.3. Subscribe to Simulation Logs

	API Message Structure
	1. Python Dictionaries VS JSON Strings
	2. Structure of a GridAPPS-D Message
	3. Parsing Returned Data
	4. Using the STOMP Client
	4.1. Specifying the Topic
	4.2. Entering the Request Message

	4.3. Submitting a Request

	Using the PowerGrid Models API
	1. Introduction to the PowerGrid Model API
	2. API Syntax Overview
	2.1. API Communication Channel
	2.2. Structure of a Query Message
	2.3. Specifying the requestType

	3. Querying for Feeder Model Info
	3.1. Query for mRIDs of all Models
	3.2. Query for Details Dictionary of all Models

	4. Querying for Object Info
	4.1. Query for CIM Classes of Objects in Model
	4.2. Query for mRIDs of Objects in a Feeder
	4.3. Query for CIM Attributes of an Object
	4.4. Query for Object Dictionary

	5. Querying for Object Measurements
	5.1. Object mRIDs vs Measurement mRIDs
	5.2. Querying for Measurements

	5.3. Filtering Returned Data
	6. GridAPPSD-Python Shortcut Methods
	6.1. Querying for mRIDs of all Models
	6.2. Query for CIM Classes of Objects in Model
	6.3. Query for CIM Attributes of an Object

	7. Available Models in Default Installation
	7.1. IEEE 13 Node Model
	7.2. IEEE 123 Node Model
	7.3. IEEE 123 Node Model with PV
	7.4. IEEE 8500 Node Model
	7.5. 9500 Node Test System
	7.6. PNNL Taxonomy Feeder
	7.7. EPRI J1 Feeder
	7.8. UAF Microgrid

	Using the Configuration File API
	1. Introduction to the Configuration File API
	2. API Syntax Overview
	2.1. API Communication Channel
	2.2. Structure of a Query Message
	2.3. Specifying the configurationType

	3. Querying for GridLab-D Configuration Files
	3.1. Query for all GridLab-D Files

	3.2. Query for GridLab-D Base GLM File
	3.3. Query for GridLab-D Symbols File
	3.4. Query for GridLab-D Measurement Types
	4. Querying for CIM Dictionary Files
	4.1. Query for Model Dictionary
	4.2. Query for CIM Feeder Index

	5. Querying for OpenDSS Configuration Files
	5.1. Query for all OpenDSS Files
	5.2. Query for OpenDSS Base File
	5.3. Query for OpenDSS Coordinate File
	5.4. Query for Y-Bus Matrix

	Indices and tables

